This is a python based camera calibration "library". Some things:
- Uses nbdev, which is an awesome and fun way to develop and tinker.
- Uses pytorch for optimization of intrinsic and extrinsic parameters. Each step in the model is modularized as its own pytorch
nn.module
in themodules.ipynb
notebook.- Optimization is carried out via the built in
LBFGS
optimizer. TheLBFGS
optimizer uses only the gradient to do a quasi second order optimization. However, I've noticed it's imperfect and can a take long time to converge in some cases. - The use of pytorch allows the forward pass to be easily modified. It also allows the use of any differentiable loss function although I've noticed that sum of squared errors seems to give the best results of the losses I've tried.
- Optimization is carried out via the built in
- The fiducial point detector for my calibration board uses a pytorch neural net under the hood (more info here), which is easily integrated into this library since its python based.
import camera_calib.api as api
Before calibration can be done, we need the following information:
- Images and their respective camera and pose indices
- Calibration board geometry
- Fiducial point detector
- Control point refiner
import re
from pathlib import Path
files_img = list(Path('data/dot_vision_checker').glob('*.png'))
files_img
[PosixPath('data/dot_vision_checker/SERIAL_16276941_DATETIME_2019-06-07-00:38:48-109732_CAM_2_FRAMEID_0_COUNTER_2.png'),
PosixPath('data/dot_vision_checker/SERIAL_19061245_DATETIME_2019-06-07-00:38:19-438594_CAM_1_FRAMEID_0_COUNTER_1.png'),
PosixPath('data/dot_vision_checker/SERIAL_16276942_DATETIME_2019-06-07-00:38:19-438636_CAM_3_FRAMEID_0_COUNTER_1.png'),
PosixPath('data/dot_vision_checker/SERIAL_16276942_DATETIME_2019-06-07-00:38:48-109736_CAM_3_FRAMEID_0_COUNTER_2.png'),
PosixPath('data/dot_vision_checker/SERIAL_16276941_DATETIME_2019-06-07-00:38:19-438631_CAM_2_FRAMEID_0_COUNTER_1.png')]
def _parse_name(name_img):
match = re.match(r'''SERIAL_(?P<serial>.*)_
DATETIME_(?P<date>.*)_
CAM_(?P<cam>.*)_
FRAMEID_(?P<frameid>.*)_
COUNTER_(?P<counter>.*).png''',
name_img,
re.VERBOSE)
return match.groupdict()
imgs = []
for file_img in files_img:
dict_group = _parse_name(file_img.name)
img = api.File16bitImg(file_img)
img.idx_cam = int(dict_group['cam'])-1
img.idx_cb = int(dict_group['counter'])-1
imgs.append(img)
for img in imgs: print(f'{img.name} - cam: {img.idx_cam} - cb: {img.idx_cb}')
SERIAL_16276941_DATETIME_2019-06-07-00:38:48-109732_CAM_2_FRAMEID_0_COUNTER_2 - cam: 1 - cb: 1
SERIAL_19061245_DATETIME_2019-06-07-00:38:19-438594_CAM_1_FRAMEID_0_COUNTER_1 - cam: 0 - cb: 0
SERIAL_16276942_DATETIME_2019-06-07-00:38:19-438636_CAM_3_FRAMEID_0_COUNTER_1 - cam: 2 - cb: 0
SERIAL_16276942_DATETIME_2019-06-07-00:38:48-109736_CAM_3_FRAMEID_0_COUNTER_2 - cam: 2 - cb: 1
SERIAL_16276941_DATETIME_2019-06-07-00:38:19-438631_CAM_2_FRAMEID_0_COUNTER_1 - cam: 1 - cb: 0
The calibration board geometry specifies where fiducial markers and control points are located. For this example, my dot vision checker board is used.
h_cb = 50.8
w_cb = 50.8
h_f = 42.672
w_f = 42.672
num_c_h = 16
num_c_w = 16
spacing_c = 2.032
cb_geom = api.CbGeom(h_cb, w_cb,
api.CpCSRGrid(num_c_h, num_c_w, spacing_c),
api.FmCFPGrid(h_f, w_f))
cb_geom.plot()
from pathlib import Path
This fiducial detector will take in an image and return the locations of the fiducial markers. The detector in this example is a neural net trained specifically on my calibration board. More info available at:
file_model = Path('models/dot_vision_checker.pth')
detector = api.DotVisionCheckerDLDetector(file_model)
The refiner will take in an image, initial guesses for control points, and the boundaries around the control points, and return a refined point. The boundaries help determine how much neighboring info can be used to refine the control point.
refiner = api.OpenCVCheckerRefiner(hw_min=5, hw_max=15, cutoff_it=20, cutoff_norm=1e-3)
Now, we can calibrate
calib = api.multi_calib(imgs, cb_geom, detector, refiner)
Refining control points for: SERIAL_19061245_DATETIME_2019-06-07-00:38:19-438594_CAM_1_FRAMEID_0_COUNTER_1...
Refining single parameters...
- Iteration: 000 - Norm: 0.00492 - Loss: 5.36733
- Iteration: 001 - Norm: 0.14985 - Loss: 3.73449
- Iteration: 002 - Norm: 0.01378 - Loss: 3.72178
- Iteration: 003 - Norm: 3.80677 - Loss: 3.50140
- Iteration: 004 - Norm: 60.91136 - Loss: 1.69839
- Iteration: 005 - Norm: 0.00000 - Loss: 1.69839
Refining control points for: SERIAL_16276941_DATETIME_2019-06-07-00:38:48-109732_CAM_2_FRAMEID_0_COUNTER_2...
Refining control points for: SERIAL_16276941_DATETIME_2019-06-07-00:38:19-438631_CAM_2_FRAMEID_0_COUNTER_1...
Refining single parameters...
- Iteration: 000 - Norm: 0.04150 - Loss: 145.18373
- Iteration: 001 - Norm: 0.13431 - Loss: 83.63355
- Iteration: 002 - Norm: 0.84358 - Loss: 3.92886
- Iteration: 003 - Norm: 0.27788 - Loss: 3.59249
- Iteration: 004 - Norm: 27.32694 - Loss: 2.63209
- Iteration: 005 - Norm: 0.01238 - Loss: 2.63208
- Iteration: 006 - Norm: 0.00000 - Loss: 2.63208
Refining control points for: SERIAL_16276942_DATETIME_2019-06-07-00:38:19-438636_CAM_3_FRAMEID_0_COUNTER_1...
Refining control points for: SERIAL_16276942_DATETIME_2019-06-07-00:38:48-109736_CAM_3_FRAMEID_0_COUNTER_2...
Refining single parameters...
- Iteration: 000 - Norm: 0.04606 - Loss: 59.69785
- Iteration: 001 - Norm: 0.18309 - Loss: 23.21653
- Iteration: 002 - Norm: 0.19523 - Loss: 10.38509
- Iteration: 003 - Norm: 0.09765 - Loss: 10.04688
- Iteration: 004 - Norm: 1.24157 - Loss: 9.89971
- Iteration: 005 - Norm: 104.59411 - Loss: 1.76128
- Iteration: 006 - Norm: 0.29888 - Loss: 1.76086
- Iteration: 007 - Norm: 0.00000 - Loss: 1.76086
Refining multi parameters...
- Iteration: 000 - Norm: 0.00057 - Loss: 10.14000
- Iteration: 001 - Norm: 0.00077 - Loss: 8.43795
- Iteration: 002 - Norm: 0.00093 - Loss: 8.04904
- Iteration: 003 - Norm: 0.00117 - Loss: 7.83528
- Iteration: 004 - Norm: 0.00270 - Loss: 7.61741
- Iteration: 005 - Norm: 0.00085 - Loss: 7.56616
- Iteration: 006 - Norm: 0.00390 - Loss: 7.39859
- Iteration: 007 - Norm: 0.00385 - Loss: 7.29511
- Iteration: 008 - Norm: 0.00106 - Loss: 7.28492
- Iteration: 009 - Norm: 0.00278 - Loss: 7.27331
- Iteration: 010 - Norm: 0.00804 - Loss: 7.24146
- Iteration: 011 - Norm: 0.00827 - Loss: 7.21109
- Iteration: 012 - Norm: 0.00414 - Loss: 7.20269
- Iteration: 013 - Norm: 0.00452 - Loss: 7.19479
- Iteration: 014 - Norm: 0.00009 - Loss: 7.19475
- Iteration: 015 - Norm: 0.01420 - Loss: 7.17619
- Iteration: 016 - Norm: 0.00618 - Loss: 7.17040
- Iteration: 017 - Norm: 0.01975 - Loss: 7.15089
- Iteration: 018 - Norm: 0.00002 - Loss: 7.15089
- Iteration: 019 - Norm: 0.00000 - Loss: 7.15089
From Bo Li's calibration paper, we know the coordinate graph of calibration board poses and cameras forms a bipartite graph. For debugging purposes this is displayed below.
api.plot_bipartite(calib)
Plot residuals
api.plot_residuals(calib);
Plot extrinsics; note that %matplotlib notebook
can be used to make the plot interactive
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(20,20))
ax = fig.add_subplot(2, 2, 1, projection='3d')
api.plot_extrinsics(calib, ax=ax)
ax.view_init(elev=90, azim=-90)
ax = fig.add_subplot(2, 2, 2, projection='3d')
api.plot_extrinsics(calib, ax=ax)
ax.view_init(elev=45, azim=-45)
ax = fig.add_subplot(2, 2, 3, projection='3d')
api.plot_extrinsics(calib, ax=ax)
ax.view_init(elev=0, azim=-90)
ax = fig.add_subplot(2, 2, 4, projection='3d')
api.plot_extrinsics(calib, ax=ax)
ax.view_init(elev=0, azim=0)
plt.subplots_adjust(wspace=0, hspace=0)
This matches pretty closely to my camera rig
Save
api.save(calib, '/tmp/calib.pth')
Load
del calib
calib = api.load('/tmp/calib.pth')
from camera_calib.utils import convert_notebook
convert_notebook()