Skip to content

k3v007/PlantDoc-btp2019

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Plant Disease Detection and Diagnosis using Deep Learning

It's a B.Tech Final Year - 2019 Project

Installation

  1. Install postgres and complete it's configuration

  2. Use the package manager pip for installation and python3.6 or above

  3. Create a virtual environment (using virtualenv etc.)

    pip install virtualenv

# We use virtualenvwrapper for easy management of envs
    pip install virtualenvwrapper # for linux
    pip install virtualenvwrapper-win # for windows

# Create virtual environment
    mkvirtualenv env_name
    setprojectdir .     # assuming you are in git-directory
  1. Install the requirements
    pip install -r requirements.txt
  1. To deactivate the env simply quit the terminal or enter
    deactivate

Usage

  1. Copy "trained_models" folders to the path "/app/tf_disease_classifier/trained_models"
  2. Set app settings and environment variables
    • rename .env.example to .env and set the values as directed in the file
  3. Run the following commands to set migrations:
    python manage.py db init
    python manage.py db migrate -m "Inital commit"
    python manage.py db upgrade
  1. Finally run the flask app
    python run.py

Postman environment setup

  1. Load 'btp-2019.postman_collection.json' into Postman
  2. Create an enviroment and set {key:value} as:
  3. Now test the different apis:
    • first register admin and user
    • use admin to register plants and diseases