Functional-style Streams API library
Facilitates processing of collections and iterables using fluent APIs.
Gives access to files of various types (json, toml, yaml, xml, csv, tsv, plain text) for reading and executing complex queries.
Provides easy integration with itertools.
(NB: Commonly used itertools 'recipes' are included as part of the main APIs.)
- stream from iterable
Stream([1, 2, 3])
- from variadic arguments
Stream.of(1, 2, 3)
- empty stream
Stream.empty()
- infinite ordered stream
Stream.iterate(0, lambda x: x + 1)
NB: in similar fashion you can create finite ordered stream by providing a condition predicate
Stream.iterate(10, operation=lambda x: x + 1, condition=lambda x: x < 15).to_list()
# [10, 11, 12, 13, 14]
- infinite unordered stream
import random
Stream.generate(lambda: random.random())
- infinite stream with given value
Stream.constant(42)
- stream from range
(from start (inclusive) to stop (exclusive) by an incremental step (defaults to 1))
Stream.from_range(0, 10).to_list()
Stream.from_range(0, 10, 3).to_list()
Stream.from_range(10, -1, -2).to_list()
(or from range object)
range_obj = range(0, 10)
Stream.from_range(range_obj).to_list()
- concat
(concatenate new streams/iterables with the current one)
Stream.of(1, 2, 3).concat(Stream.of(4, 5)).to_list()
Stream([1, 2, 3]).concat([5, 6]).to_list()
- prepend
(prepend new stream/iterable to the current one)
Stream([2, 3, 4]).prepend(0, 1).to_list()
Stream.of(3, 4, 5).prepend(Stream.of([0, 1], 2)).to_list()
NB: creating new stream from None raises error.
In cases when the iterable could potentially be None use the of_nullable() method instead;
it returns an empty stream if None and a regular one otherwise
- filter
Stream([1, 2, 3]).filter(lambda x: x % 2 == 0)
- map
Stream([1, 2, 3]).map(str).to_list()
Stream([1, 2, 3]).map(lambda x: x + 5).to_list()
- filter_map
(filter out all None or discard_falsy values (if discard_falsy=True) and applies mapper function to the elements of the stream)
Stream.of(None, "foo", "", "bar", 0, []).filter_map(str.upper, discard_falsy=True).to_list()
# ["FOO", "BAR"]
- flat_map
(map each element of the stream and yields the elements of the produced iterators)
Stream([[1, 2], [3, 4], [5]]).flat_map(lambda x: Stream(x)).to_list()
# [1, 2, 3, 4, 5]
- flatten
Stream([[1, 2], [3, 4], [5]]).flatten().to_list()
# [1, 2, 3, 4, 5]
- reduce
(returns Optional)
Stream([1, 2, 3]).reduce(lambda acc, val: acc + val, identity=3).get()
- peek
(perform the provided operation on each element of the stream without consuming it)
(Stream([1, 2, 3, 4])
.filter(lambda x: x > 2)
.peek(lambda x: print(f"{x} ", end=""))
.map(lambda x: x * 20)
.to_list())
- enumerate
(returns each element of the Stream preceded by his corresponding index (by default starting from 0 if not specified otherwise))
iterable = ["x", "y", "z"]
Stream(iterable).enumerate().to_list()
Stream(iterable).enumerate(start=1).to_list()
# [(0, "x"), (1, "y"), (2, "z")]
# [(1, "x"), (2, "y"), (3, "z")]
- view
(provides access to a selected part of the stream)
Stream([1, 2, 3, 4, 5, 6, 7, 8, 9]).view(start=1, stop=-3, step=2).to_list()
# [2, 4, 6]
- distinct
(returns a stream with the distinct elements of the current one)
Stream([1, 1, 2, 2, 2, 3]).distinct().to_list()
- skip
(discards the first n elements of the stream and returns a new stream with the remaining ones)
Stream.iterate(0, lambda x: x + 1).skip(5).limit(5).to_list()
- limit / head
(returns a stream with the first n elements, or fewer if the underlying iterator ends sooner)
Stream([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).limit(3).to_tuple()
Stream([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).head(3).to_tuple()
- tail
(returns a stream with the last n elements, or fewer if the underlying iterator ends sooner)
Stream([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).tail(3).to_tuple()
- take_while
(returns a stream that yields elements based on a predicate)
Stream.of(1, 2, 3, 4, 5, 6, 7, 2, 3).take_while(lambda x: x < 5).to_list()
# [1, 2, 3, 4]
- drop_while
(returns a stream that skips elements based on a predicate and yields the remaining ones)
Stream.of(1, 2, 3, 5, 6, 7, 2).drop_while(lambda x: x < 5).to_list()
# [5, 6, 7, 2]
- sort
(sorts the elements of the current stream according to natural order or based on the given comparator;
if 'reverse' flag is True, the elements are sorted in descending order)
(Stream.of((3, 30), (2, 30), (2, 20), (1, 20), (1, 10))
.sort(lambda x: (x[0], x[1]), reverse=True)
.to_list())
# [(3, 30), (2, 30), (2, 20), (1, 20), (1, 10)]
- reverse
(sorts the elements of the current stream in reverse order;
alias for 'sort(collector, reverse=True)')
(Stream.of((3, 30), (2, 30), (2, 20), (1, 20), (1, 10))
.reverse(lambda x: (x[0], x[1]))
.to_list())
# [(3, 30), (2, 30), (2, 20), (1, 20), (1, 10)]
NB: in case of stream of dicts all key-value pairs are represented internally as DictItem objects
(including recursively for nested Mapping structures)
to provide more convenient intermediate operations syntax e.g.
first_dict = {"a": 1, "b": 2}
second_dict = {"x": 3, "y": 4}
(Stream(first_dict).concat(second_dict)
.filter(lambda x: x.value % 2 == 0)
.map(lambda x: x.key)
.to_list())
- on_close
(returns an equivalent Stream with an additional close handler to be invoked automatically by the terminal operation)
(Stream([1, 2, 3, 4])
.on_close(lambda: print("Sorry Montessori"))
.peek(lambda x: print(f"{'$' * x} ", end=""))
.map(lambda x: x * 2)
.to_list())
# "$ $$ $$$ $$$$ Sorry Montessori"
# [2, 4, 6, 8]
- collecting result into list, tuple, set
Stream([1, 2, 3]).to_list()
Stream([1, 2, 3]).to_tuple()
Stream([1, 2, 3]).to_set()
- into dict
class Foo:
def __init__(self, name, num):
self.name = name
self.num = num
Stream([Foo("fizz", 1), Foo("buzz", 2)]).to_dict(lambda x: (x.name, x.num))
# {"fizz": 1, "buzz": 2}
In the case of a collision (duplicate keys) the 'merger' functions indicates which entry should be kept
collection = [Foo("fizz", 1), Foo("fizz", 2), Foo("buzz", 2)]
Stream(collection).to_dict(collector=lambda x: (x.name, x.num), merger=lambda old, new: old)
# {"fizz": 1, "buzz": 2}
to_dict method also supports creating dictionaries from dict DictItem objects
first_dict = {"x": 1, "y": 2}
second_dict = {"p": 33, "q": 44, "r": None}
Stream(first_dict).concat(Stream(second_dict)).to_dict(lambda x: DictItem(x.key, x.value or 0))
# {"x": 1, "y": 2, "p": 33, "q": 44, "r": 0}
e.g. you could combine streams of dicts by writing:
Stream(first_dict).concat(Stream(second_dict)).to_dict()
(simplified from '.to_dict(lambda x: x)')
- into string
Stream({"a": 1, "b": [2, 3]}).to_string()
# "Stream(DictItem(key=a, value=1), DictItem(key=b, value=[2, 3]))"
Stream({"a": 1, "b": [2, 3]}).map(lambda x: {x.key: x.value}).to_string(delimiter=" | ")
# "Stream({'a': 1} | {'b': [2, 3]})"
- alternative for working with collectors is using the collect method
Stream([1, 2, 3]).collect(tuple)
Stream.of(1, 2, 3).collect(list)
Stream.of(1, 1, 2, 2, 2, 3).collect(set)
Stream.of(1, 2, 3, 4).collect(dict, lambda x: (str(x), x * 10))
Stream.of("x", "y", "z").collect(str, str_delimiter="->")
- grouping
Stream("AAAABBBCCD").group_by(collector=lambda key, grouper: (key, len(grouper)))
# {"A": 4, "B": 3, "C": 2, "D": 1}
coll = [Foo("fizz", 1), Foo("fizz", 2), Foo("fizz", 3), Foo("buzz", 2), Foo("buzz", 3), Foo("buzz", 4), Foo("buzz", 5)]
Stream(coll).group_by(
classifier=lambda obj: obj.name,
collector=lambda key, grouper: (key, [(obj.name, obj.num) for obj in list(grouper)]))
# {"fizz": [("fizz", 1), ("fizz", 2), ("fizz", 3)],
# "buzz": [("buzz", 2), ("buzz", 3), ("buzz", 4), ("buzz", 5)]}
- for_each
Stream([1, 2, 3, 4]).for_each(lambda x: print(f"{'#' * x} ", end=""))
- count
(returns the count of elements in the stream)
Stream([1, 2, 3, 4]).filter(lambda x: x % 2 == 0).count()
- sum
Stream.of(1, 2, 3, 4).sum()
- min
(returns Optional with the minimum element of the stream)
Stream.of(2, 1, 3, 4).min().get()
- max
(returns Optional with the maximum element of the stream)
Stream.of(2, 1, 3, 4).max().get()
- average
(returns the average value of elements in the stream)
Stream.of(1, 2, 3, 4, 5).average()
- find_first
(search for an element of the stream that satisfies a predicate, returns an Optional with the first found value, if any, or None)
Stream.of(1, 2, 3, 4).filter(lambda x: x % 2 == 0).find_first().get()
- find_any
(search for an element of the stream that satisfies a predicate, returns an Optional with some of the found values, if any, or None)
Stream.of(1, 2, 3, 4).filter(lambda x: x % 2 == 0).find_any().get()
- any_match
(returns whether any elements of the stream match the given predicate)
Stream.of(1, 2, 3, 4).any_match(lambda x: x > 2)
- all_match
(returns whether all elements of the stream match the given predicate)
Stream.of(1, 2, 3, 4).all_match(lambda x: x > 2)
- none_match
(returns whether no elements of the stream match the given predicate)
Stream.of(1, 2, 3, 4).none_match(lambda x: x < 0)
- take_first
(returns Optional with the first element of the stream or a default value)
Stream({"a": 1, "b": 2}).take_first().get()
Stream([]).take_first(default=33).get()
# DictItem(key="a", value=1)
# 33
- take_last
(returns Optional with the last element of the stream or a default value)
Stream({"a": 1, "b": 2}).take_last().get()
Stream([]).take_last(default=33).get()
- compare_with
(compares linearly the contents of two streams based on a given comparator)
fizz = Foo("fizz", 1)
buzz = Foo("buzz", 2)
Stream([buzz, fizz]).compare_with(Stream([fizz, buzz]), lambda x, y: x.num == y.num)
- quantify
(count how many of the elements are Truthy or evaluate to True based on a given predicate)
Stream([2, 3, 4, 5, 6]).quantify(predicate=lambda x: x % 2 == 0)
NB: although the Stream is closed automatically by the terminal operation
you can still close it by hand (if needed) invoking the close() method.
In turn that will trigger the close_handler (if such was provided)
Invoke use method by passing the itertools function and it's arguments as **kwargs
import itertools
import operator
Stream([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]).use(itertools.islice, start=3, stop=8)
Stream.of(1, 2, 3, 4, 5).use(itertools.accumulate, func=operator.mul).to_list()
Stream(range(3)).use(itertools.permutations, r=3).to_list()
Invoke the 'recipes' described here as stream methods and pass required key-word arguments
Stream([1, 2, 3]).ncycles(count=2).to_list()
Stream.of(2, 3, 4).take_nth(10, default=66).get()
Stream(["ABC", "D", "EF"]).round_robin().to_list()
- working with json, toml, yaml, xml files
NB: FileStream reads data as series of DictItem objects from underlying dict_items view
FileStream("path/to/file").map(lambda x: f"{x.key}=>{x.value}").to_tuple()
# ("abc=>xyz", "qwerty=>42")
from operator import attrgetter
from pyrio import DictItem
(FileStream("path/to/file")
.filter(lambda x: "a" in x.key)
.map(lambda x: DictItem(x.key, sum(x.value) * 10))
.sort(attrgetter("value"), reverse=True)
.map(lambda x: f"{str(x.value)}::{x.key}")
.to_list())
# ["230::xza", "110::abba", "30::a"]
- querying csv and tsv files
(each row is read as a dict with keys taken from the header)
FileStream("path/to/file").map(lambda x: f"fizz: {x['fizz']}, buzz: {x['buzz']}").to_tuple()
# ("fizz: 42, buzz: 45", "fizz: aaa, buzz: bbb")
from operator import itemgetter
FileStream("path/to/file").map(itemgetter('fizz')).to_list()
# ['42', 'aaa']
You could query the nested dicts by creating streams out of them
(FileStream("path/to/file")
.map(lambda x: (Stream(x).to_dict(lambda y: DictItem(y.key, y.value or "Unknown"))))
.save())
- reading plain text (if the file doesn't have one of the aforementioned extensions)
(FileStream("path/to/lorem/ipsum")
.map(lambda x: x.strip())
.enumerate()
.filter(lambda line: "id" in line[1])
.to_dict()
)
# {1: "sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.",
# 6: "Excepteur sint occaecat cupidatat non proident, sunt in culpa",
# 7: "qui officia deserunt mollit anim id est laborum."}
- reading a file with process() method
- use extra f_open_options (for the underlying open file function)
- f_read_options (to be passed to the corresponding library function that is loading the file content e.g. tomllib, json)
from decimal import Decimal
(FileStream.process(
file_path="path/to/file.json",
f_open_options={"encoding": "utf-8"},
f_read_options={"parse_float": Decimal})
.map(lambda x:x.value).to_list())
# ['foo', True, Decimal('1.22'), Decimal('5.456367654)]
To include the root tag when loading an .xml file pass 'include_root=True'
FileStream.process("path/to/custom_root.xml", include_root=True).map(
lambda x: f"root={x.key}: inner_records={str(x.value)}"
).to_list()
# ["root=custom-root: inner_records={'abc': 'xyz', 'qwerty': '42'}"]
- write the contents of a FileStream by passing a file_path to the save() method
in_memory_dict = Stream(json_dict).filter(lambda x: len(x.key) < 6).to_tuple()
FileStream("path/to/file.json").prepend(in_memory_dict).save("./tests/resources/updated.json")
If no path is given, the source file for the FileStream will be updated
FileStream("path/to/file.json").concat(in_memory_dict).save()
NB: if while updating the file something goes wrong, the original content will be restored/preserved
- handle null values
(pass null_handler function to replace null values)
FileStream("path/to/test.toml").save(null_handler=lambda x: DictItem(x.key, x.value or "N/A"))
NB: useful for writing .toml files which don't allow None values
- passing advanced file open and write options
similarly to the process method you could provide- f_open_options (for the underlying open function)
- f_write_options (passed to the corresponding library that will 'dump' the contents of the stream e.g. tomli-w, pyyaml)
FileStream("path/to/file.json").concat(in_memory_dict).save(
file_path="merged.xml",
f_open_options={"encoding": "utf-8"},
f_write_options={"indent": 4},
)
E.g. to append to existing file pass f_open_options={"mode": "a"} to the save() method.
NB: By default saving plain text uses "\n" as delimiter between items,
you can pass custom delimiter using f_write_options
(FileStream("path/to/lorem/ipsum")
.map(lambda line: line.strip())
.enumerate()
.filter(lambda line: "ad" in line[1])
.map(lambda line: f"line:{line[0]}, text='{line[1]}'")
.save(f_open_options={"mode": "a"}, f_write_options={"delimiter": " || "})
)
# Lorem ipsum...
# ...
# line:0, text='Lorem ipsum dolor sit amet, consectetur adipisicing elit,' || line:2, text='Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris'
When working with plain text you can pass 'header' and 'footer' as f_write_options
to be prepended or appended to the FileStream output
(FileStream("path/to/lorem/ipsum")
.map(lambda line: line.strip())
.enumerate()
.filter(lambda line: line[0] == 3)
.map(lambda line: f"{line[0]}: {line[1]}")
.save(f_open_options={"mode": "a"}, f_write_options={"header": "\nHeader\n", "footer": "\nFooter\n"})
)
# Lorem ipsum...
# ...
# qui officia deserunt mollit anim id est laborum.
#
# Header
# 3: nisi ut aliquip ex ea commodo consequat.
# Footer
#
To add custom root tag when saving an .xml file pass 'xml_root="my-custom-root"'
FileStream("path/to/file.json").concat(in_memory_dict).save(
file_path="path/to/custom.xml",
f_open_options={"encoding": "utf-8"},
f_write_options={"indent": 4},
xml_root="my-custom-root",
)
(
FileStream("path/to/file.csv")
.concat(
FileStream("path/to/other/file.json")
.filter(
lambda x: (
Stream(x.value)
.find_first(lambda y: y.key == "name" and y.value != "Snake")
.or_else_get(lambda: None)
)
is not None
)
.map(lambda x: x.value)
)
.map(lambda x: (Stream(x).to_dict(lambda y: DictItem(y.key, y.value or "N/A"))))
.save("path/to/third/file.tsv")
)
- ...some leetcode maybe?
# check if given string is palindrome; string length is guaranteed to be > 0
def validate_str(string):
stop = len(string) // 2 if len(string) > 1 else 1
return Stream.from_range(0, stop).none_match(lambda x: string[x] != string[x - 1])
validate_str("a1b2c3c2b1a")
validate_str("abc321")
validate_str("x")
# True
# False
# True
- ...and another one?
# count vowels and constants in given string
from curses.ascii import isalpha
def process_str(string):
ALL_VOWELS = "AEIOUaeiou"
return (Stream(string)
.filter(lambda ch: isalpha(ch))
.partition(lambda ch: ch in ALL_VOWELS) # Partitions entries into true and false ones
.map(lambda p: tuple(p))
.enumerate()
.map(lambda x: ("Vowels" if x[0] == 0 else "Consonants", [len(x[1]), x[1]]))
.to_dict()
)
process_str("123Ab5oc-E6db#bCi9<>")
# {'Vowels': [4, ('A', 'o', 'E', 'i')], 'Consonants': [6, ('b', 'c', 'd', 'b', 'b', 'C')]}
How hideous can it get?