Skip to content

High Performance Tensorflow Data Pipeline with State of Art Augmentations and low level optimizations.

License

Notifications You must be signed in to change notification settings

kartik4949/TensorPipe

Repository files navigation

TensorPipe

Library MIT License LinkedIn codecov

alt text

High Performance Tensorflow Data Pipeline with State of Art Augmentations build as a wrapper aroung tensorflow datasets api, with low level optimizations.

Requirements

  • Python 3.8
  • Tensorflow 2.2
  • Tensorflow addons
  • Sklearn
  • typeguard

Install using:

pip install tensorflow-addons==0.11.2
pip install tensorflow==2.2.0
pip install sklearn
pip install typeguard

Features

  • High Performance tf.data pipline
  • Core tensorflow support for high performance
  • Classification data support
  • Bbox data support
  • Keypoints data support
  • Segmentation data support
  • GridMask in core tf2.x
  • Mosiac Augmentation in core tf2.x
  • CutOut in core tf2.x
  • Flexible and easy configuration
  • Gin-config support
  • Custom numpy function injection.

Advance Users Section:

Example Usage 1

Create a Data Pipeline for Training. (Categorical Data).

from pipe import Funnel                                                         
from bunch import Bunch                                                         
"""                                                                             
Create a Funnel for the Pipeline!                                               
"""                                                                             


# Config for Funnel
config = {                                                                      
    "batch_size": 2,                                                            
    "image_size": [512,512],                                                    
    "transformations": {                                                        
        "flip_left_right": None,                                                
        "gridmask": None,                                                       
        "random_rotate":None,                                                   
    },                                                                          
    "categorical_encoding":"labelencoder"                                       
}                                                                               
config = Bunch(config)                                                          
pipeline = Funnel(data_path="testdata", config=config, datatype="categorical")  
pipeline = pipeline.from_dataset(type="train")                                       
                                                                                
# Pipline ready to use, iter over it to use.
# Custom loop example.
for data in pipeline:
    image_batch , label_batch = data[0], data[1]
    # you can use _loss = loss(label_batch,model.predict(image_batch))
    # calculate gradients on loss and optimize the model.
    print(image_batch,label_batch)                                      

Example Usage 2

Create a Data Pipeline for Bounding Boxes with tf records.

import numpy as np
from tensorpipe.pipe import Funnel

"""
Create a Funnel for the Pipeline!
"""

# Custom numpy code for injection.
def numpy_function(image, label):
    """normalize image"""
    image = image / 255.0
    return image, label


config = {
    "batch_size": 2,
    "image_size": [512, 512],
    "transformations": {
        "flip_left_right": None,
        "gridmask": None,
        "random_rotate": None,
    },
    "max_instances_per_image": 100,
    "categorical_encoding": "labelencoder",
    "numpy_function": numpy_function,
}
funnel = Funnel(data_path="tfrecorddata", config=config, datatype="bbox")
dataset = funnel.from_tfrecords(type="train")

for data in dataset:
    print(data[1].shape)

Object Detection Usage

Now build your custom bounding box funnel with subclassing BboxFunnel.

from tensorpipe.funnels import funnels
class CustomObjectDetectionLoader(funnels.BboxFunnel):
      def __init__(self, *args):
          super().__init__(*args)

      def encoder(self,args):
          # encoder is overriden to give custom anchors to the model as per the need.

          image_id, image, bbox, classes = args
          # make custom anchors and encode the image and bboxes as per the model need.
          return image, custom_anchors, classes
      def decoder(self, args):
          # override decoder if using custom tf records and decode your custom tfrecord in this method
          return decoded_data
          
funnel = CustomObjectDetectionLoader(data_path="tfrecorddata", config=config, datatype="bbox")
dataset = funnel.from_tfrecords(type="train")

Steps to build tfrecords and custom input loader.

  • use funnels.create_records script to build tfrecord or build your own tfrecords using your custom script.
  • if used the create_records script to build records, we dont need to overide decoder, but if using custom script overriding the decoder function is mandatory.
  • If using anchors in the models, please override encoder with custom anchor script.

Beginners Section.

Keras Compatiblity.

Very simple example to use pipeline with keras model.fit as iterable.

import tensorflow as tf
from pipe import Funnel

"""
Create a Funnel for the Pipeline!
"""

config = {
    "batch_size": 2,
    "image_size": [100, 100],
    "transformations": {
        "flip_left_right": None,
        "gridmask": None,
        "random_rotate": None,
    },
    "categorical_encoding": "labelencoder",
}
pipeline = Funnel(data_path="testdata", config=config, datatype="categorical")
# from dataset i.e normal dataset.
pipeline = pipeline.from_dataset(type="train")

# e.g from tfrecords i.e tfrecord dataset.
# pipeline = pipeline.from_tfrecords(type="train") # testdata/train/*.tfrecord

# Create Keras model
model = tf.keras.applications.VGG16(
    include_top=True, weights=None,input_shape=(100,100,3),
    pooling=None, classes=2, classifier_activation='sigmoid'
)

# compile
model.compile(loss='mse', optimizer='adam')

# pass pipeline as iterable
model.fit(pipeline , batch_size=2,steps_per_epoch=5,verbose=1)

Config.

  • image_size - Output Image Size for the pipeline.
  • batch_size - Batch size for the pipeline.
  • transformations - Dictionary of transformations to apply with respective keyword arguments.
  • categorical_encoding - Encoding for categorical data - ('labelencoder' , 'onehotencoder').

Augmentations:

GridMask

Creates a gridmask on input image with rotation defined on range.

  • params:
    • ratio - grid to space ratio
    • fill - fill value
    • rotate - rotation range in degrees

MixUp

Mixes two randomly sampled images and their respective labels with given alpha.

  • params:
    • alpha - value for blend function.

RandomErase

Randomly erases rectangular chunk with is sampled randomly on given image.

  • params:
    • prob - probablity to randomerase on image.

CutMix

Overlaps a resized randomly sample image on given image with complete overlay on subset portion of image.

  • params:
    • prob - probablity to CutMix on image.

Mosaic

Creates a mosaic of input 4 images into one single image.

  • params:
    • prob - Probablity to mosaic.

CutMix, CutOut, MixUp

alt text

Mosaic

alt-text

Grid Mask

alt-text

Release History

  • v1.0
    • Bbox, Keypoints, Custom Py Functions Support.(WIP)
  • v1.0-beta
    • Classification Support with gridmask and mosaic augmentations.

Meta

Kartik Sharma – @linkedInkartik4949@gmail.com

Distributed under the Apache 2.0 license. See LICENSE for more information.