:::{tip} For v1, see https://asdf-pydantic.readthedocs.io/en/v1/ :::
Type-validated scientific data serialization with ASDF and Pydantic models
import asdf
from asdf_pydantic import AsdfPydanticModel
class Rectangle(AsdfPydanticModel):
_tag = "asdf://asdf-pydantic/examples/tags/rectangle-1.0.0"
width: float
height: float
# After creating extension and install ...
af = asdf.AsdfFile()
af["rect"] = Rectangle(width=1, height=1)
ASDF File
print(af.dumps())
#ASDF 1.0.0
#ASDF_STANDARD 1.5.0
%YAML 1.1
%TAG ! tag:stsci.edu:asdf/
--- !core/asdf-1.1.0
asdf_library: !core/software-1.0.0 {
author: The ASDF Developers,
homepage: 'http://github.com/asdf-format/asdf',
name: asdf,
version: 2.14.3}
history:
extensions:
- !core/extension_metadata-1.0.0
extension_class: asdf.extension.BuiltinExtension
software: !core/software-1.0.0 {
name: asdf,
version: 2.14.3}
- !core/extension_metadata-1.0.0 {
extension_class: mypackage.shapes.ShapesExtension,
extension_uri: 'asdf://asdf-pydantic/shapes/extensions/shapes-1.0.0'}
rect: !<asdf://asdf-pydantic/shapes/tags/rectangle-1.0.0> {
height: 1.0,
width: 1.0}
...
ASDF Schema
print(af["rect"].model_asdf_schema())
%YAML 1.1
---
$schema: http://stsci.edu/schemas/asdf/asdf-schema-1.0.0
id: asdf://asdf-pydantic/examples/tags/rectangle-1.0.0/schema
title: Rectangle
type: object
properties:
width:
title: Width
type: number
height:
title: Height
type: number
required:
- width
- height
JSON Schema
print(af["rect"].model_json_schema())
{
"properties": {
"width": {
"title": "Width",
"type": "number"
},
"height": {
"title": "Height",
"type": "number"
}
},
"required": [
"width",
"height"
],
"title": "Rectangle",
"type": "object"
}
- Create ASDF tag from your pydantic models with batteries (converters) included
- Automatically generate ASDF schemas
- Validate data models as you create them, and not only when reading and writing ASDF files
- Preserve Python types when deserializing ASDF files
- All the benefits of pydantic (e.g., JSON encoder, JSON schema, pydantic types).
pip install "asdf-pydantic>=2a"
Define your data model with AsdfPydanticModel
. For pydantic fans, this has
all the features of pydantic's BaseModel.
# mypackage/shapes.py
from asdf_pydantic import AsdfPydanticModel
class Rectangle(AsdfPydanticModel):
_tag = "asdf://asdf-pydantic/examples/tags/rectangle-1.0.0"
width: Annotated[
u.Quantity[u.m], AsdfTag("tag:stsci.edu:asdf/core/unit/quantity-1.*")
]
height: Annotated[
u.Quantity[u.m], AsdfTag("tag:stsci.edu:asdf/core/unit/quantity-1.*")
]
Then create an ASDF extension with the help of the provided converter class AsdfPydanticConverter
.
# mypackage/extensions.py
from asdf.extension import Extension
from asdf_pydantic.converter import AsdfPydanticConverter
from mypackage.shapes import Rectangle
converter = AsdfPydanticConverter()
converter.add_models(Rectangle)
class ShapesExtension(Extension):
extension_uri = "asdf://asdf-pydantic/examples/extensions/shapes-1.0.0"
converters = [converter]
tags = [*converter.tags]
After your extension is installed with either the entrypoint method or temporarily
with asdf.get_config()
:
import asdf
from mypackage.extensions import ShapeExtension
asdf.get_config().add_extension(ShapesExtension())
af = asdf.AsdfFile()
af["rect"] = Rectangle(width=1, height=1)
# Write
af.write_to("shapes.asdf")
# Read back and validate
with asdf.open("shapes.asdf", "rb") as af:
print(af["rect"])
:maxdepth: 1
concepts/index
tutorials/index
apidocs/index