forked from SEACrowd/seacrowd-datahub
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Implement dataloader for struct_amb_ind * Update seacrowd/sea_datasets/struct_amb_ind/struct_amb_ind.py Co-authored-by: Jonibek Mansurov <44943993+MJonibek@users.noreply.github.com> --------- Co-authored-by: Jonibek Mansurov <44943993+MJonibek@users.noreply.github.com>
- Loading branch information
Showing
2 changed files
with
174 additions
and
0 deletions.
There are no files selected for viewing
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,174 @@ | ||
import os | ||
from itertools import chain | ||
from pathlib import Path | ||
from typing import Dict, List, Tuple | ||
|
||
import datasets | ||
|
||
from seacrowd.utils import schemas | ||
from seacrowd.utils.configs import SEACrowdConfig | ||
from seacrowd.utils.constants import Licenses, Tasks | ||
|
||
_CITATION = """\ | ||
@inproceedings{widiaputri-etal-5641, | ||
author = {Widiaputri, Ruhiyah Faradishi and Purwarianti, Ayu and Lestari, Dessi Puji and Azizah, Kurniawati and Tanaya, Dipta and Sakti, Sakriani}, | ||
title = {Speech Recognition and Meaning Interpretation: Towards Disambiguation of Structurally Ambiguous Spoken Utterances in Indonesian}, | ||
booktitle = {Proceedings of the EMNLP 2023}, | ||
year = {2023} | ||
} | ||
""" | ||
|
||
_DATASETNAME = "struct_amb_ind" | ||
|
||
_DESCRIPTION = """ | ||
This dataset contains the first Indonesian speech dataset for structurally ambiguous utterances and each of transcription and two disambiguation texts. | ||
The structurally ambiguous sentences were adapted from Types 4,5,6, and 10 of Types Of Syntactic Ambiguity in English by [Taha et al., 1983]. | ||
For each chosen type, 100 structurally ambiguous sentences in Indonesian were made by crowdsourcing. | ||
Each Indonesian ambiguous sentence has two possible interpretations, resulting in two disambiguation text outputs for each ambiguous sentence. | ||
Each disambiguation text is made up of two sentences. All of the sentences have been checked by linguists. | ||
""" | ||
|
||
_HOMEPAGE = "https://github.com/ha3ci-lab/struct_amb_ind" | ||
|
||
_LICENSE = Licenses.UNKNOWN.value | ||
|
||
_LOCAL = True # get the audio data externally from https://drive.google.com/drive/folders/1QeaptstBgwGYO6THGkZHHViExrogCMUj | ||
_LANGUAGES = ["ind"] | ||
|
||
_URL_TEMPLATES = { | ||
"keys": "https://raw.githubusercontent.com/ha3ci-lab/struct_amb_ind/main/keys/train_dev_test_spk_keys/", | ||
"text": "https://raw.githubusercontent.com/ha3ci-lab/struct_amb_ind/main/text/", | ||
} | ||
|
||
_URLS = { | ||
"split_train": _URL_TEMPLATES["keys"] + "train_spk", | ||
"split_dev": _URL_TEMPLATES["keys"] + "dev_spk", | ||
"split_test": _URL_TEMPLATES["keys"] + "test_spk", | ||
"text_transcript": _URL_TEMPLATES["text"] + "ID_amb_disam_transcript.txt", | ||
} | ||
|
||
_SUPPORTED_TASKS = [Tasks.SPEECH_RECOGNITION] | ||
|
||
_SOURCE_VERSION = "1.0.0" | ||
|
||
_SEACROWD_VERSION = "1.0.0" | ||
|
||
|
||
class StructAmbInd(datasets.GeneratorBasedBuilder): | ||
""" | ||
This dataset contains the first Indonesian speech dataset for structurally ambiguous utterances and each of transcription and two disambiguation texts. | ||
This dataloader does NOT contain the additional training data for as mentioned in the _HOMEPAGE, as it is already implemented in the dataloader "indspeech_news_lvcsr". | ||
""" | ||
|
||
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) | ||
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) | ||
|
||
BUILDER_CONFIGS = [ | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_source", | ||
version=SOURCE_VERSION, | ||
description=f"{_DATASETNAME} source schema", | ||
schema="source", | ||
subset_id=f"{_DATASETNAME}", | ||
), | ||
SEACrowdConfig( | ||
name=f"{_DATASETNAME}_seacrowd_sptext", | ||
version=SEACROWD_VERSION, | ||
description=f"{_DATASETNAME} SEACrowd schema", | ||
schema="seacrowd_sptext", | ||
subset_id=f"{_DATASETNAME}", | ||
), | ||
] | ||
|
||
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" | ||
|
||
def _info(self) -> datasets.DatasetInfo: | ||
if self.config.schema == "source": | ||
features = datasets.Features( | ||
{ | ||
"id": datasets.Value("string"), | ||
"speaker_id": datasets.Value("string"), | ||
"path": datasets.Value("string"), | ||
"audio": datasets.Audio(sampling_rate=16_000), | ||
"amb_transcript": datasets.Value("string"), | ||
"disam_text": datasets.Value("string"), | ||
} | ||
) | ||
|
||
elif self.config.schema == "seacrowd_sptext": | ||
features = schemas.speech_text_features | ||
|
||
return datasets.DatasetInfo( | ||
description=_DESCRIPTION, | ||
features=features, | ||
homepage=_HOMEPAGE, | ||
license=_LICENSE, | ||
citation=_CITATION, | ||
) | ||
|
||
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: | ||
# The data_dir configuration is required ONLY for the audio_urls. | ||
if self.config.data_dir is None: | ||
raise ValueError("This is a local dataset. Please pass the data_dir kwarg to load_dataset.") | ||
else: | ||
data_dir = self.config.data_dir | ||
|
||
# load the local audio folders | ||
audio_urls = [data_dir + "/" + f"{gender}{_id:02}.zip" for gender in ["F", "M"] for _id in range(1, 12, 1)] | ||
audio_files_dir = [Path(dl_manager.extract(audio_url)) / audio_url.split("/")[-1][:-4] for audio_url in audio_urls] | ||
# load the speaker splits and transcript | ||
split_train = Path(dl_manager.download(_URLS["split_train"])) | ||
split_dev = Path(dl_manager.download(_URLS["split_dev"])) | ||
split_test = Path(dl_manager.download(_URLS["split_test"])) | ||
text_transcript = Path(dl_manager.download(_URLS["text_transcript"])) | ||
|
||
return [ | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TRAIN, | ||
gen_kwargs={"split": split_train, "transcript": text_transcript, "audio_files_dir": audio_files_dir}, | ||
), | ||
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"split": split_dev, "transcript": text_transcript, "audio_files_dir": audio_files_dir}), | ||
datasets.SplitGenerator( | ||
name=datasets.Split.TEST, | ||
gen_kwargs={"split": split_test, "transcript": text_transcript, "audio_files_dir": audio_files_dir}, | ||
), | ||
] | ||
|
||
def _generate_examples(self, split: Path, transcript: Path, audio_files_dir: List[Path]) -> Tuple[int, Dict]: | ||
speaker_ids = open(split, "r").readlines() | ||
speaker_ids = [id.replace("\n", "") for id in speaker_ids] | ||
speech_folders = [audio_folder for audio_folder in audio_files_dir if audio_folder.name.split("/")[-1] in speaker_ids] | ||
speech_files = list(chain(*[list(map((str(speech_folder) + "/").__add__, os.listdir(speech_folder))) for speech_folder in speech_folders])) | ||
|
||
transcript = open(transcript, "r").readlines() | ||
transcript = [sent.replace("\n", "").split("|") for sent in transcript] | ||
transcript_dict = {sent[0]: {"amb_transcript": sent[1], "disam_text": sent[2]} for sent in transcript} | ||
|
||
for key, aud_file in enumerate(speech_files): | ||
aud_id = aud_file.split("/")[-1][:-4] | ||
aud_info = aud_id.split("_") | ||
if self.config.schema == "source": | ||
row = { | ||
"id": aud_id, | ||
"speaker_id": aud_info[1], | ||
"path": aud_file, | ||
"audio": aud_file, | ||
"amb_transcript": transcript_dict[aud_id]["amb_transcript"], | ||
"disam_text": transcript_dict[aud_id]["disam_text"], | ||
} | ||
yield key, row | ||
elif self.config.schema == "seacrowd_sptext": | ||
row = { | ||
"id": aud_id, | ||
"path": aud_file, | ||
"audio": aud_file, | ||
"text": transcript_dict[aud_id]["amb_transcript"], | ||
"speaker_id": aud_info[1], | ||
"metadata": { | ||
"speaker_age": None, | ||
"speaker_gender": aud_info[1][0], | ||
}, | ||
} | ||
yield key, row | ||
else: | ||
raise NotImplementedError(f"Schema '{self.config.schema}' is not defined.") |