2HDM H/A → Z( → ll) A/H ( → bb) search: ULegcay Full RunII Analysis (nanoAOD working version is 9) :
- Analysis use Bamboo RDataFrame and works with NanoAODv
{5, 7, 8, and 9}
, check.yml
configuration inbamboo_/config/
directory to run ZA anslysis with your favourite NanoAOD version. - You can find more about Bamboo in the UserGuide. Also feel free to report any issue you encounter in ~bamboo channel on the CERN mattermost, or on Gitlab.
mkdir bamboodev
cd bamboodev
# make a virtualenv
source /cvmfs/sft.cern.ch/lcg/views/LCG_101/x86_64-centos7-gcc10-opt/setup.sh
python -m venv bamboovenv101
source bamboovenv101/bin/activate
# clone and install bamboo
git clone -o upstream https://gitlab.cern.ch/cp3-cms/bamboo.git
pip install ./bamboo
# clone and install plotIt
git clone -o upstream https://github.com/cp3-llbb/plotIt.git
mkdir build-plotit
cd build-plotit
cmake -DCMAKE_INSTALL_PREFIX=$VIRTUAL_ENV ../plotIt
make -j2 install
cd -
# The last two commands; < pip install ./bamboo > and < make -j2 install >
# need to be run again, every time you upgrade your LCG working version!
# To use scalefactors and weights in the new CMS JSON format, the correctionlib package should be installed with
# you can ignore torch and sphinx pip errors !
pip install --no-binary=correctionlib correctionlib
# To use the calculators modules for jet and MET corrections and systematic variations
# Please use Tags: 0.1.0 at the moment
pip install git+https://gitlab.cern.ch/cp3-cms/CMSJMECalculators.git@0.1.0
# To update the JER and JEC from the database: https://github.com/cms-jet
# but I recommend using ``--onlyprepare --maxFiles=1`` arguments when running bamboo for the first time and/or updating your JEC/JER files
checkCMSJMEDatabaseCaches --cachedir cacheJEC/
# You will also need the python implementation "pyplotit" of "plotIt", which can be installed with
pip install git+https://gitlab.cern.ch/cp3-cms/pyplotit.git
#or editable from a local clone:
git clone -o upstream https://gitlab.cern.ch/cp3-cms/pyplotit.git
pip install -e pyplotit
- Let's make things more simpler, in your
~/.bashrc
you can add:
# cms_env : is only for cp3 users working on ingrid-ui1 cluster
function cms_env() {
module --force purge
module load cp3
module load cms/cmssw
module load grid/grid_environment_sl7
module load crab/crab3
module load slurm/slurm_utils
}
alias bamboo_env="source /cvmfs/sft.cern.ch/lcg/views/LCG_101/x86_64-centos7-gcc10-opt/setup.sh"
alias bambooenv="source $HOME/bamboodev/bamboovenv101/bin/activate"
- And, in your
~/.config/bamboorc
add:
[batch]
backend = slurm
[slurm]
sbatch_qos = cp3
sbatch_partition = cp3
sbatch_additionalOptions = --licenses=cms_storage:3
sbatch_time = 6:59:00
sbatch_memPerCPU = 7000
[das]
sitename = T2_BE_UCL
storageroot = /storage/data/cms
checklocalfiles = True
xrootdredirector = xrootd-cms.infn.it
- Every time you want to setup your bamboo enviroment, what you simply need to do:
cms_env
voms-proxy-init -voms cms -rfc -valid 192:00
bamboo_env
bambooenv
cd bamboodev/bamboo
git checkout master
git pull upstream master
pip install --upgrade .
# if the previous did not work try :
# python -m pip install --upgrade .
cd (path to)/plotItclone/
mkdir build-plotit
cd build-plotit
cmake -DCMAKE_INSTALL_PREFIX=$VIRTUAL_ENV (path to)/plotItclone
make -j2 install
cd -
git fetch upstream merge-requests/150/head:test_mr-150
git checkout test_mr-150
pip install --upgrade .
I do recommend to test locally first with --maxFiles=1
, to check that the module runs correctly in all cases before submitting to a batch system. If all right you can submit to slurm with --distributed=driver
. Avoid as well using -v/--verbose
for slurm submission, will make your jobs slower.
-m
/--module
: your analysis module.-s
/--systematics
: add to your plots PSweight (FSR , ISR), PDFs and six QCD scale variations, ele_id, ele_reco, pu, BtagWeight, DY, top pt reweighting...-y
/--yields
: add Yields Histograms: not recomended when turning on the systematics uncertainties, jobs may run out of memory very quickly!-v
/--verbose
: give you more print out for debugging.--chunk
: because the signal mass points are too many ( ~ 400 ) and when trying to evaluate the DNN model with all systematics the jobs become too heavy/long. I decided to split these points on 20 chunks.-dnn
/--DNN_Evaluation
: pass TensorFlow/ONNEX/SOFIE model and evaluate DNN output.--hlt
: Produce HLT efficiencies maps.--blinded
: blinded data from 0.6 to 1 bin for the DNN output score.--nanoaodversion
: End-Of-Year the latest isv7
or ULegacy campaign-working version isv8
or the latest one isv9
, see Release notes--backend
:dataframe (default)
orlazy
orcompile
for debug mode.--doMETT1Smear
: this correction is a propagation of L2L3 JEC to pfMET, see MET Type1 and Type2 corrections for more details.--dobJetEnergyRegression
: apply b jets energy regression to improve the bjets mass resolution--splitJER
: breakup into 6 nuisance parameters per year (correlated among all jets in all events per year, but uncorrelated across years), useful for analysis that are sensitive to JER, i.e. analyses that are able to constrain the single JER nuisance parameter per year w.r.t. their assigned uncertainty.--jes
: run 2 reduced set of JES uncertainty splited by sources or use total.- some other default settings are done here.
bambooRun --maxFiles=1 -m ZAtollbb.py:NanoHtoZA config/fullanalysisRunIISummer20UL_18_17_16_chunk1_nanov9.yml -o test/2018/chunk_1 -dnn -s --era=2018 --chunk=1
--skim
: this argument will skip doing control plots and do only skimmed trees to save in the output file, useful for training a classifier.
bambooRun --maxFiles=1 -m ZAtollbb.py:NanoHtoZA config/fullanalysisRunIISummer20UL_18_17_16_nanov9.yml -o test_full_skim --skim
bambooRun --distributed=driver -m BtagEfficiencies.py:ZA_BTagEfficiencies config/<mc.yml> -o <output_path>
- You can choose from these flags here.
- To run on a worker node with a more recent CPU
srun --partition=cp3 --qos=cp3 --time=0-24:00:00 --pty bash
- In case you want to run plotIt again (after changing few options such fill color, legend position, unable systematics, etc...)
plotIt -i <output_path> -o <output_path>/plots_<era> -y -e era <output_path>/plots.yml
- For post-processing use
--onlypost
:
bambooRun --onlypost -m ZAtollbb.py:NanoHtoZA config/<_.yml> -o <output_path>