In this project, we try the YOLOv5 model on our custom data set. To train the model, we utilize the GPU in Colab. The properties of this GPU are shown below:
Tue Aug 16 06:47:37 2022
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 460.32.03 Driver Version: 460.32.03 CUDA Version: 11.2 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 Tesla T4 Off | 00000000:00:04.0 Off | 0 |
| N/A 38C P8 9W / 70W | 0MiB / 15109MiB | 0% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
Our data set contains 100 images in 2 Player, and Ball classes. We use this data set to customize the YOLO algorithm weights based on some related categories of images with our dataset.
- 80% of images were placed in the training set, and 20% were separated as validation and test sets.
- For annotating we use Makesense.ai tool. Here's an example:
1 0.357311 0.475853 0.025943 0.029396
1 0.150943 0.582939 0.021226 0.029396
0 0.600825 0.448557 0.038915 0.163778
0 0.859670 0.535695 0.044811 0.178475
0 0.785967 0.653279 0.069575 0.203672
In the first step, we need to clone the YOLOV5 repository and install requirements.txt. Models and datasets download automatically from the latest YOLOv5 release.
!git clone https://github.com/ultralytics/yolov5
%cd yolov5
%pip install -qr requirements.txt
import torch
import utils
display = utils.notebook_init()
Our data set is uploaded manually using following command:
!unzip -q ../Iranian-Football-Detection.zip -d ../
And here's the custom yaml for our data set:
train: ../Iranian-Football-Detection/ # train images
val: ../Iranian-Football-Detection/ # val images
# Classes
nc: 2 # number of classes
names: ['player', 'ball'] # class names
As an example, the small version of YOLOv5 is trained by the following code:
!python train.py --img 640 --batch 32 --epochs 200 --data IFD.yaml --weights yolov5s.pt --cache
The summary of the training procedure for YOLOv5s: Model summary: 213 layers, 7015519 parameters, 0 gradients, 15.8 GFLOPs
Class | Images | Instances | P | R | mAP@.5 | mAP@[.5,.95] |
---|---|---|---|---|---|---|
all | 100 | 883 | 0.983 | 0.984 | 0.992 | 0.615 |
player | 100 | 734 | 0.987 | 0.995 | 0.995 | 0.761 |
ball | 100 | 149 | 0.979 | 0.973 | 0.99 | 0.468 |
Here's the command for applying custom weights and its result on test set:
!python detect.py --weights runs/train/exp/weights/best.pt --img 640 --conf 0.25 --source ../sample_1.mp4
We use the Fork and Pull Request model for contribution. For more information read the CONTRIBUTE.md.