Skip to content

Commit

Permalink
footnote added
Browse files Browse the repository at this point in the history
  • Loading branch information
kolosovpetro committed Jan 25, 2024
1 parent 98a5178 commit d736342
Show file tree
Hide file tree
Showing 3 changed files with 22 additions and 11 deletions.
Binary file modified out/PolynomialIdentityInvolvingBTandFaulhaber.pdf
Binary file not shown.
5 changes: 5 additions & 0 deletions src/sections/01_introduction/footnote.tex
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
One may assume that it is possible to reach the form $n^{2m+1} = \sum_{k=1}^{n} \mathbf{A}_{m,0} k^0 (n-k)^0 + \mathbf{A}_{m,1}(n-k)^1
+ \cdots + \mathbf{A}_{m,m} k^m (n-k)^m$ simply taking finite differences of the polynomial $n^{2m+1}$ up to order of $2m+1$
and interpolating it backwards similarly as shown in~\eqref{eq:cubes_interpolation}.
However, my observations do not provide any evidence of such assumption.
Interestingly enough is that we could have been arrived to the pure differential approach of the relation~\eqref{eq:odd_power_conjecture} then.
28 changes: 17 additions & 11 deletions src/sections/01_introduction/introduction.tex
Original file line number Diff line number Diff line change
Expand Up @@ -17,16 +17,21 @@
\end{center}
\caption{Table of finite differences of the polynomial $n^3$.} \label{tab:table}
\end{table}
We can observe easily that finite differences of the polynomial $n^3$ may be expressed according
We can observe easily that finite differences
\footnote{\input{sections/01_introduction/footnote}}
of the polynomial $n^3$ may be expressed according
to the following relation, via rearrangement of the terms
\begin{align*}
\Delta(0^3) &= 1+6 \cdot 0 \\
\Delta(1^3) &= 1+6\cdot0+6\cdot1 \\
\Delta(2^3) &= 1+6\cdot0+6\cdot1+6\cdot2 \\
\Delta(3^3) &= 1+6\cdot0+6\cdot1+6\cdot2+6\cdot3 \\
&\; \; \vdots \\
\Delta(n^3) &= 1+6\cdot0+6\cdot1+6\cdot2+6\cdot3+\cdots+6\cdot n
\end{align*}
\begin{align}
\label{eq:cubes_interpolation}
\begin{split}
\Delta(0^3) &= 1+6 \cdot 0 \\
\Delta(1^3) &= 1+6\cdot0+6\cdot1 \\
\Delta(2^3) &= 1+6\cdot0+6\cdot1+6\cdot2 \\
\Delta(3^3) &= 1+6\cdot0+6\cdot1+6\cdot2+6\cdot3 \\
&\; \; \vdots \\
\Delta(n^3) &= 1+6\cdot0+6\cdot1+6\cdot2+6\cdot3+\cdots+6\cdot n
\end{split}
\end{align}
Furthermore, the polynomial $n^3$ is identical to
\begin{align*}
n^3 &= [1+6\cdot0]+[1+6\cdot0+6\cdot1]+[1+6\cdot0+6\cdot1+6\cdot2]+\cdots \\
Expand All @@ -52,8 +57,9 @@
Therefore, let be a conjecture
\begin{conj}
For every $n\geq 1, \; n,m\in\mathbb{N}$ there are coefficients $\coeffA{m}{0}, \coeffA{m}{1}, \ldots, \coeffA{m}{m}$ such that
\begin{equation*}
\begin{equation}
\label{eq:odd_power_conjecture}
n^{2m+1} = \sum_{k=1}^{n} \coeffA{m}{0} k^0 (n-k)^0 + \coeffA{m}{1} (n-k)^1
+ \cdots + \coeffA{m}{m} k^m (n-k)^m
\end{equation*}
\end{equation}
\end{conj}

0 comments on commit d736342

Please sign in to comment.