Skip to content

koogle/oxide

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Minimal neural net in Rust

image

Because what if we want to run a net on a very small form factor

Inspiration

MLP Example

let mut net = MLP::new(vec![4, 6, 4], 4);
let values = vec![1.0, 0.0,0.0,1.0];
let alpha = 0.01;
net.set(values.clone());
let outputs = net.outputs();

let mut loss = Value::from(0.0);
for (index, output) in outputs.iter().enumerate() {
    let tmp = Engine::pow(&Engine::add(
        output,
        &Engine::inv(&Value::from(values[index])),
    ));

    loss = Engine::add(&loss, &tmp);
}
loss = Engine::mul(&loss, &Value::from(1.0 / values.len() as f64));
loss.borrow_mut().forward();
loss.borrow_mut().grad = 1.0;

for _ in 0..1000 {
    net.zero_grad();
    loss.borrow_mut().grad = 1.0;
    loss.borrow_mut().backward();
    net.update(alpha);
    loss.borrow_mut().forward();
}
println!("{}", loss.borrow().value);
assert!(loss.borrow().value < 1e-10);

Releases

No releases published

Packages

No packages published

Languages