Skip to content

Commit

Permalink
updating documentation #1
Browse files Browse the repository at this point in the history
  • Loading branch information
gaustin15 committed Sep 29, 2024
1 parent 38712ec commit ceb73c8
Show file tree
Hide file tree
Showing 183 changed files with 57,684 additions and 304 deletions.
23 changes: 6 additions & 17 deletions AdaptationDebiasMClassifier.html
Original file line number Diff line number Diff line change
Expand Up @@ -263,11 +263,14 @@
<li>
<a href="DebiasMClassifier-demo.html">Demo</a>
</li>
<li>
<a href="MultitaskDebiasMClassifier.html">MultitaskDebiasMClassifier</a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">
<span class="fa fa-arrow-trend-up"></span>
<span class="fa fa-sliders"></span>

Regression

Expand All @@ -280,30 +283,16 @@
<li>
<a href="DebiasMRegressor-demo.html">Demo</a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">
<span class="fa fa-sliders"></span>

Multitask

<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="MultitaskDebiasMClassifier.html">MultitaskDebiasMClassifier</a>
</li>
<li>
<a href="MultitaskDebiasMClassifier-demo.html">Demo</a>
<a href="MultitaskDebiasMRegressor.html">MultitaskDebiasMRegressor</a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">
<span class="fa fa-globe"></span>

Adaptation
Online learning

<span class="caret"></span>
</a>
Expand Down
9 changes: 7 additions & 2 deletions DebiasMClassifier.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -79,10 +79,12 @@ klippy::klippy(c('r', 'python', 'bash'),
&emsp;&emsp;&emsp; &emsp;&emsp;&emsp; &emsp;&emsp;&emsp; &emsp;&emsp;&emsp;&emsp;&emsp;&ensp; l2_strength=0,<br>
&emsp;&emsp;&emsp; &emsp;&emsp;&emsp; &emsp;&emsp;&emsp; &emsp;&emsp;&emsp;&emsp;&emsp;&ensp; w_l2=0,<br>
&emsp;&emsp;&emsp; &emsp;&emsp;&emsp; &emsp;&emsp;&emsp; &emsp;&emsp;&emsp;&emsp;&emsp;&ensp; random_state=None,<br>
&emsp;&emsp;&emsp; &emsp;&emsp;&emsp; &emsp;&emsp;&emsp; &emsp;&emsp;&emsp;&emsp;&emsp;&ensp; x_val=None<br>
&emsp;&emsp;&emsp; &emsp;&emsp;&emsp; &emsp;&emsp;&emsp; &emsp;&emsp;&emsp;&emsp;&emsp;&ensp; )
&emsp;&emsp;&emsp; &emsp;&emsp;&emsp; &emsp;&emsp;&emsp; &emsp;&emsp;&emsp;&emsp;&emsp;&ensp; x_val=None,<br>
&emsp;&emsp;&emsp; &emsp;&emsp;&emsp; &emsp;&emsp;&emsp; &emsp;&emsp;&emsp;&emsp;&emsp;&ensp; prediction_loss=torch.nn.functional.binary_cross_entropy<br>
&emsp;&emsp;&emsp; &emsp;&emsp;&emsp; &emsp;&emsp;&emsp; &emsp;&emsp;&emsp;&emsp;&ensp; &emsp;)
</div>


<br>
The DEBIAS-M Classifier. <br> <br>
This class implements multiplicative DEBIAS-M bias-correction using aggregated microbiome n_samples \times n_taxa read count matrices from multiple `X` samples, along with a provided binary `y` label. It can handle both read count and relative abundance inputs. <br> <br>
Expand Down Expand Up @@ -113,6 +115,9 @@ Parameters
* <hr style="height: 2.5px; border: 1px solid #987CAC; background-color: #987CAC; margin: 2px">
* <span style="color:#DD4814">x_val: {array-like, sparse matrix} of shape (n_samples, 1 + n_taxa), default=None</span>
* An `n_samples` x `1 + n_taxa` matrix describing the read counts of held-out validation and/or test sets, for which any validation or testing labels will not be available during training. The first column of <span style="color:#DD4814">x_val</span> denotes the batch of each sample, as non-negative integers which are interpreted alongside batches specified in the <span style="color:#DD4814">train</span> inputs. Providing <span style="color:#DD4814">x_val</span> allows DEBIAS-M to account for distribution shifts from these samples during training.
* <hr style="height: 2.5px; border: 1px solid #987CAC; background-color: #987CAC; margin: 2px">
* <span style="color:#DD4814">prediction_loss: loss function, default=torch.nn.functional.binary_cross_entropy</span>
* Used to specify the prediction loss function to be used during training.
</div>

<br><br>
Expand Down
44 changes: 15 additions & 29 deletions DebiasMClassifier.html
Original file line number Diff line number Diff line change
Expand Up @@ -261,13 +261,13 @@
<a href="DebiasMClassifier.html">DebiasMClassifier</a>
</li>
<li>
<a href="DebiasMClassifier-demo.html">Demo</a>
<a href="MultitaskDebiasMClassifier.html">MultitaskDebiasMClassifier</a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">
<span class="fa fa-arrow-trend-up"></span>
<span class="fa fa-sliders"></span>

Regression

Expand All @@ -278,41 +278,21 @@
<a href="DebiasMRegressor.html">DebiasMRegressor</a>
</li>
<li>
<a href="DebiasMRegressor-demo.html">Demo</a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">
<span class="fa fa-sliders"></span>

Multitask

<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="MultitaskDebiasMClassifier.html">MultitaskDebiasMClassifier</a>
</li>
<li>
<a href="MultitaskDebiasMClassifier-demo.html">Demo</a>
<a href="MultitaskDebiasMRegressor.html">MultitaskDebiasMRegressor</a>
</li>
</ul>
</li>
<li class="dropdown">
<a href="#" class="dropdown-toggle" data-toggle="dropdown" role="button" data-bs-toggle="dropdown" aria-expanded="false">
<span class="fa fa-globe"></span>

Adaptation
Online learning

<span class="caret"></span>
</a>
<ul class="dropdown-menu" role="menu">
<li>
<a href="AdaptationDebiasMClassifier.html">AdaptationDebiasMClassifier</a>
</li>
<li>
<a href="AdaptationDebiasMClassifier-demo.html">Demo</a>
<a href="OnlineDebiasMClassifier.html">OnlineDebiasMClassifier</a>
</li>
</ul>
</li>
Expand All @@ -328,9 +308,6 @@
<li>
<a href="DebiasMClassifierLogAdd.html">DebiasMClassifierLogAdd</a>
</li>
<li>
<a href="DebiasMClassifierLogAdd-demo.html">Demo</a>
</li>
</ul>
</li>
<li class="dropdown">
Expand Down Expand Up @@ -442,7 +419,9 @@ <h1>
= ‘infer’,<br>                    learning_rate=0.005, <br>            
       min_epochs=25,<br>                    l2_strength=0,<br>        
           w_l2=0,<br>                    random_state=None,<br>        
           x_val=None<br>                    )</p>
           x_val=None,<br>                   
prediction_loss=torch.nn.functional.binary_cross_entropy<br>            
       )</p>
</div>
<p><br> The DEBIAS-M Classifier. <br> <br> This class implements
multiplicative DEBIAS-M bias-correction using aggregated microbiome
Expand Down Expand Up @@ -511,6 +490,13 @@ <h2>Parameters</h2>
style="color:#DD4814">x_val</span> allows DEBIAS-M to account for
distribution shifts from these samples during training.</li>
</ul></li>
<li><hr style="height: 2.5px; border: 1px solid #987CAC; background-color: #987CAC; margin: 2px"></li>
<li><span style="color:#DD4814">prediction_loss: loss function,
default=torch.nn.functional.binary_cross_entropy</span>
<ul>
<li>Used to specify the prediction loss function to be used during
training.</li>
</ul></li>
</ul>
</div>
<p><br><br></p>
Expand Down
9 changes: 7 additions & 2 deletions DebiasMClassifierLogAdd.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -79,10 +79,12 @@ klippy::klippy(c('r', 'python', 'bash'),
&emsp;&emsp;&emsp; &emsp;&emsp;&emsp; &emsp;&emsp;&emsp; &emsp;&emsp;&emsp;&emsp;&emsp;&ensp;&emsp;&emsp;&emsp;&ensp; l2_strength=0,<br>
&emsp;&emsp;&emsp; &emsp;&emsp;&emsp; &emsp;&emsp;&emsp; &emsp;&emsp;&emsp;&emsp;&emsp;&ensp;&emsp;&emsp;&emsp;&ensp; w_l2=0,<br>
&emsp;&emsp;&emsp; &emsp;&emsp;&emsp; &emsp;&emsp;&emsp; &emsp;&emsp;&emsp;&emsp;&emsp;&ensp;&emsp;&emsp;&emsp;&ensp; random_state=None,<br>
&emsp;&emsp;&emsp; &emsp;&emsp;&emsp; &emsp;&emsp;&emsp; &emsp;&emsp;&emsp;&emsp;&emsp;&ensp;&emsp;&emsp;&emsp;&ensp; x_val=None<br>
&emsp;&emsp;&emsp; &emsp;&emsp;&emsp; &emsp;&emsp;&emsp; &emsp;&emsp;&emsp;&emsp;&emsp;&ensp;&emsp;&emsp;&emsp;&ensp; )
&emsp;&emsp;&emsp; &emsp;&emsp;&emsp; &emsp;&emsp;&emsp; &emsp;&emsp;&emsp;&emsp;&emsp;&ensp;&emsp;&emsp;&emsp;&ensp; x_val=None,<br>
&emsp;&emsp;&emsp; &emsp;&emsp;&emsp; &emsp;&emsp;&emsp; &emsp;&emsp;&emsp;&emsp;&emsp;&ensp;&emsp;&emsp;&emsp;&ensp; prediction_loss=torch.nn.functional.binary_cross_entropy<br>
&emsp;&emsp;&emsp; &emsp;&emsp;&emsp; &emsp;&emsp;&emsp; &emsp;&emsp;&emsp;&emsp;&emsp; &emsp;&emsp;&emsp;&emsp;)
</div>


<br>
The DEBIAS-M Classifier implementation for logspace inputs. <br> <br>
This class implements additive DEBIAS-M bias-correction, which models the processing-bias mechanism in logarithmic space representations of read count samples, such as the center log ratio transform.<br>
Expand Down Expand Up @@ -116,6 +118,9 @@ Parameters
* <hr style="height: 2.5px; border: 1px solid #987CAC; background-color: #987CAC; margin: 2px">
* <span style="color:#DD4814">x_val: {array-like, sparse matrix} of shape (n_samples, 1 + n_taxa), default=None</span>
* An `n_samples` x `1 + n_taxa` matrix describing the log-processed read counts of held-out validation and/or test sets, for which any validation or testing labels will not be available during training. The first column of <span style="color:#DD4814">x_val</span> denotes the batch of each sample, as non-negative integers which are interpreted alongside batches specified in the <span style="color:#DD4814">train</span> inputs. Providing <span style="color:#DD4814">x_val</span> allows DEBIAS-M to account for distribution shifts from these samples during training.
* <hr style="height: 2.5px; border: 1px solid #987CAC; background-color: #987CAC; margin: 2px">
* <span style="color:#DD4814">prediction_loss: loss function, default=torch.nn.functional.binary_cross_entropy</span>
* Used to specify the prediction loss function to be used during training.
</div>

<br><br>
Expand Down
Loading

0 comments on commit ceb73c8

Please sign in to comment.