Skip to content

kotobuki09/AGRIFARM-AI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

4 Commits
Β 
Β 
Β 
Β 

Repository files navigation

AGRIFARM-AI: Intelligent Management System for Climate-Resilient Smart Agriculture

AGRIFARM-AI is an autonomous agricultural management platform integrating hybrid VLC/RF networks, multi-agent reinforcement learning, and agentic AI for precision farming in controlled environments.


🚧 Status: Under Active Development

Current phase: Architecture Design


Project Overview

AGRIFARM-AI is an ambitious research project developing an Intelligent Management System (IMS) for climate-resilient smart agriculture. The system integrates cutting-edge technologies to enable autonomous precision farming in controlled environments.

Key Innovation Areas

Area Technology Impact
Communication Hybrid VLC/RF Networks 73% RF reduction, crop-safe
Decision Making Multi-Agent RL (MARL) Autonomous coordination
Intelligence Agentic AI + LLM Natural language farming advice
Privacy Federated Learning Cross-border knowledge sharing

System Architecture

Core IMS Components

The system extends our proven IMS architecture (ACM MobiCom 2023) with four specialized agricultural agents:

πŸ”„ Agri-IHC (Intelligent Handover Controller)

  • Function: Seamless VLC/RF network transitions
  • Agricultural Adaptation: VLC-priority in grow zones; RF for mobile robots
  • Target: <250ms handover latency

πŸ“ Agri-ETL (Edge Tracking & Localization)

  • Function: Federated learning-based positioning
  • Agricultural Adaptation: Drone/robot tracking; worker localization via WiFi Doppler
  • Target: <30cm accuracy in greenhouse

πŸ’§ Agri-ARS (Adaptive Resource Management)

  • Function: ML-based resource allocation
  • Agricultural Adaptation: Precision irrigation scheduling; sensor prioritization
  • Target: 40% water savings, 30% fertilizer reduction

⚑ Agri-EHM (Energy Harvesting Management)

  • Function: LED brightness optimization
  • Agricultural Adaptation: Dual-purpose grow lights (PAR + VLC)
  • Target: 25% energy cost reduction

15-Dimensional Agricultural State Space

Our MARL agents operate on an expanded state space validated with agronomic literature:

Environmental Variables (5)

SoilMoisture       [0-100%]     Volumetric water content
AirTemperature     [15-40Β°C]    Metabolic rate driver
RelativeHumidity   [20-100%]    Disease pressure indicator
SolarRadiation     [0-1000 W/mΒ²] Photosynthesis driver
CO2Concentration   [400-1000 ppm] CEA optimization

Crop State Variables (4)

GrowthStage        [BBCH 0-9]   Seedling β†’ Harvest
LeafAreaIndex      [0-8 mΒ²/mΒ²]  Canopy development
CropStressIndex    [0-1]        NDVI-derived stress
DaysToHarvest      [0-120]      Countdown timer

Soil Variables (3)

SoilpH             [4-9]        Nutrient availability
ElectricalConductivity [0-8 dS/m] Salinity indicator
NPKLevel           [Low/Med/High] Composite nutrient index

Network Variables (3)

RSSIcurrent        [-90 to -30 dBm] Signal strength
APType             [VLC=1, RF=0]    Access point type
SensorLoad         [0-100%]         Network utilization

Climate Resilience Causal Chain

Complete pathway from forecast to validated outcome:

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ 1. Data Collection β”‚ IoT sensors + ERA5 climate data
β”‚    (Real-time)      β”‚ Every 15 minutes
β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜
         β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ 2. Prediction      β”‚ SEACLID regional model + LLM
β”‚    (48-72 hours)   β”‚ Heat stress, drought, pest risk
β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜
         β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ 3. Decision        β”‚ LLM + RAG knowledge base
β”‚    Support         β”‚ "Reduce irrigation 20% now"
β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜
         β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ 4. Action          β”‚ IMS-ARS automated execution
β”‚    Execution       β”‚ OR farmer SMS notification
β””β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”˜
         β–Ό
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ 5. Outcome         β”‚ Treatment vs. control plot
β”‚    Validation      β”‚ Quantified yield improvement
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

MARL Coordination Mechanism

Agent Interaction Model

Coordination: Centralized Training, Decentralized Execution (CTDE)

Value Decomposition: QMIX algorithm

Convergence: Nash equilibrium via fictitious play (<1000 episodes)

Reward Functions

Agent Reward Formula
IHC r = RSSI_quality - 0.1 Γ— handover_cost
ARS r = yield_proxy - 0.05 Γ— water_cost - 0.1 Γ— energy_cost
EHM r = energy_stored - 0.2 Γ— light_impact_on_crop

Federated Learning Framework (AgriFL)

Privacy-preserving cross-border agricultural intelligence:

Data Schema

Sensor Type Frequency Volume/Season
Soil moisture 15 min 50 MB
Temperature/humidity 15 min 20 MB
Camera (pest/disease) 1 hr 500 MB
Weather station 1 hr 10 MB
Total ~580 MB

Privacy Guarantees

  • Differential Privacy: Ξ΅ ≀ 0.5
  • Secure Aggregation: No raw data leaves farm
  • Cluster-based FL: Tropical (ASEAN) + Temperate (EU)

Target KPIs

Metric Baseline Target
Yield improvement - +15% under climate stress
Water use efficiency - +40%
Nitrogen use efficiency - +30%
Pest/disease reduction - -50%
Energy consumption - -25%

Technology Stack

Hardware

  • Edge Gateways: Jetson Nano (<50ms inference)
  • VLC Platform: OpenVLC 1.3 + BeagleBone Black
  • Sensors: Low-cost nodes (€50/unit vs. €200+ commercial)

Software

  • MARL Framework: QMIX with PyTorch
  • Foundation Model: LLaMA-3.1-8B (5M agricultural tokens)
  • FL Framework: AgriFL with Byzantine-robust aggregation
  • Climate APIs: ERA5, SEACLID

Development Timeline

2026        2027        2028        2029
  β”‚           β”‚           β”‚           β”‚
  β”œβ”€β”€Phase 1──┼──Phase 2──┼──Phase 3──┼──Phase 4───
  β”‚           β”‚           β”‚           β”‚           β”‚
  β”‚ Design    β”‚ Integrationβ”‚ Validationβ”‚ Transfer  β”‚
  β”‚ Farmer    β”‚ MARL Train β”‚ 4 Trials β”‚ Open-Sourceβ”‚
  β”‚ Co-Design β”‚ Edge AI    β”‚ Impact   β”‚ Commercial β”‚
  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Publications & Resources

Related Publications

  • ACM MobiCom 2023: IMS Architecture for Hybrid VLC/RF
  • LNEE 2024: Offline RL for Agricultural IoT (90.4% success)
  • IEEE ICCC: VLC/WiFi MAC Optimization

Links


🌱 Vision: Every smallholder farmer equipped with AI-powered climate resilience, accessible through open-source technology and natural language interfaces.


πŸ‘¨β€πŸ’Ό Author

NGO TRUNG KIEN NGΓ” TRUNG KIÊN
🌐 kngo.netlify.app
πŸ“§ kiennt@hsb.edu.vn
🏫 Hanoi School of Business and Management (HSB)
πŸ“± Faculty: Non-Traditional Security

About

AGRIFARM-AI: Intelligent Management System for Climate-Resilient Smart Agriculture

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published