Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

docs: Updating integration docs for Fireworks Embeddings #25247

Merged
merged 7 commits into from
Aug 14, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
215 changes: 182 additions & 33 deletions docs/docs/integrations/text_embedding/fireworks.ipynb
Original file line number Diff line number Diff line change
@@ -1,19 +1,88 @@
{
"cells": [
{
"cell_type": "raw",
"id": "afaf8039",
"metadata": {},
"source": [
"---\n",
"sidebar_label: Fireworks\n",
"---"
]
},
{
"cell_type": "markdown",
"id": "b14a24db",
"id": "9a3d6f34",
"metadata": {},
"source": [
"# FireworksEmbeddings\n",
"\n",
"This notebook explains how to use Fireworks Embeddings, which is included in the langchain_fireworks package, to embed texts in langchain. We use the default nomic-ai v1.5 model in this example."
"This will help you get started with Fireworks embedding models using LangChain. For detailed documentation on `FireworksEmbeddings` features and configuration options, please refer to the [API reference](https://api.python.langchain.com/en/latest/embeddings/langchain_fireworks.embeddings.FireworksEmbeddings.html).\n",
"\n",
"## Overview\n",
"\n",
"### Integration details\n",
"\n",
"import { ItemTable } from \"@theme/FeatureTables\";\n",
"\n",
"<ItemTable category=\"text_embedding\" item=\"Fireworks\" />\n",
"\n",
"## Setup\n",
"\n",
"To access Fireworks embedding models you'll need to create a Fireworks account, get an API key, and install the `langchain-fireworks` integration package.\n",
"\n",
"### Credentials\n",
"\n",
"Head to [fireworks.ai](https://fireworks.ai/) to sign up to Fireworks and generate an API key. Once you’ve done this set the FIREWORKS_API_KEY environment variable:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "36521c2a",
"metadata": {},
"outputs": [],
"source": [
"import getpass\n",
"import os\n",
"\n",
"if not os.getenv(\"FIREWORKS_API_KEY\"):\n",
" os.environ[\"FIREWORKS_API_KEY\"] = getpass.getpass(\"Enter your Fireworks API key: \")"
]
},
{
"cell_type": "markdown",
"id": "c84fb993",
"metadata": {},
"source": [
"If you want to get automated tracing of your model calls you can also set your [LangSmith](https://docs.smith.langchain.com/) API key by uncommenting below:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "39a4953b",
"metadata": {},
"outputs": [],
"source": [
"# os.environ[\"LANGCHAIN_TRACING_V2\"] = \"true\"\n",
"# os.environ[\"LANGCHAIN_API_KEY\"] = getpass.getpass(\"Enter your LangSmith API key: \")"
]
},
{
"cell_type": "markdown",
"id": "d9664366",
"metadata": {},
"source": [
"### Installation\n",
"\n",
"The LangChain Fireworks integration lives in the `langchain-fireworks` package:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0ab948fc",
"id": "64853226",
"metadata": {},
"outputs": [],
"source": [
Expand All @@ -22,83 +91,163 @@
},
{
"cell_type": "markdown",
"id": "67c637ca",
"id": "45dd1724",
"metadata": {},
"source": [
"## Setup"
"## Instantiation\n",
"\n",
"Now we can instantiate our model object and generate chat completions:"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "5709b030",
"execution_count": 4,
"id": "9ea7a09b",
"metadata": {},
"outputs": [],
"source": [
"from langchain_fireworks import FireworksEmbeddings"
"from langchain_fireworks import FireworksEmbeddings\n",
"\n",
"embeddings = FireworksEmbeddings(\n",
" model=\"nomic-ai/nomic-embed-text-v1.5\",\n",
")"
]
},
{
"cell_type": "markdown",
"id": "77d271b6",
"metadata": {},
"source": [
"## Indexing and Retrieval\n",
"\n",
"Embedding models are often used in retrieval-augmented generation (RAG) flows, both as part of indexing data as well as later retrieving it. For more detailed instructions, please see our RAG tutorials under the [working with external knowledge tutorials](/docs/tutorials/#working-with-external-knowledge).\n",
"\n",
"Below, see how to index and retrieve data using the `embeddings` object we initialized above. In this example, we will index and retrieve a sample document in the `InMemoryVectorStore`."
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "3d81e58c",
"execution_count": 5,
"id": "d817716b",
"metadata": {},
"outputs": [],
"outputs": [
{
"data": {
"text/plain": [
"'LangChain is the framework for building context-aware reasoning applications'"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import getpass\n",
"import os\n",
"# Create a vector store with a sample text\n",
"from langchain_core.vectorstores import InMemoryVectorStore\n",
"\n",
"text = \"LangChain is the framework for building context-aware reasoning applications\"\n",
"\n",
"vectorstore = InMemoryVectorStore.from_texts(\n",
" [text],\n",
" embedding=embeddings,\n",
")\n",
"\n",
"if \"FIREWORKS_API_KEY\" not in os.environ:\n",
" os.environ[\"FIREWORKS_API_KEY\"] = getpass.getpass(\"Fireworks API Key:\")"
"# Use the vectorstore as a retriever\n",
"retriever = vectorstore.as_retriever()\n",
"\n",
"# Retrieve the most similar text\n",
"retrieved_documents = retriever.invoke(\"What is LangChain?\")\n",
"\n",
"# show the retrieved document's content\n",
"retrieved_documents[0].page_content"
]
},
{
"cell_type": "markdown",
"id": "4a2a098d",
"id": "e02b9855",
"metadata": {},
"source": [
"# Using the Embedding Model\n",
"With `FireworksEmbeddings`, you can directly use the default model 'nomic-ai/nomic-embed-text-v1.5', or set a different one if available."
"## Direct Usage\n",
"\n",
"Under the hood, the vectorstore and retriever implementations are calling `embeddings.embed_documents(...)` and `embeddings.embed_query(...)` to create embeddings for the text(s) used in `from_texts` and retrieval `invoke` operations, respectively.\n",
"\n",
"You can directly call these methods to get embeddings for your own use cases.\n",
"\n",
"### Embed single texts\n",
"\n",
"You can embed single texts or documents with `embed_query`:"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "584b9af5",
"execution_count": 6,
"id": "0d2befcd",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0.01666259765625, 0.011688232421875, -0.1181640625, -0.10205078125, 0.05438232421875, -0.0890502929\n"
]
}
],
"source": [
"single_vector = embeddings.embed_query(text)\n",
"print(str(single_vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
"id": "1b5a7d03",
"metadata": {},
"outputs": [],
"source": [
"embedding = FireworksEmbeddings(model=\"nomic-ai/nomic-embed-text-v1.5\")"
"### Embed multiple texts\n",
"\n",
"You can embed multiple texts with `embed_documents`:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "be18b873",
"execution_count": 7,
"id": "2f4d6e97",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[0.01367950439453125, 0.0103607177734375, -0.157958984375, -0.003070831298828125, 0.05926513671875]\n",
"[0.0369873046875, 0.00545501708984375, -0.179931640625, -0.018707275390625, 0.0552978515625]\n"
"[0.016632080078125, 0.01165008544921875, -0.1181640625, -0.10186767578125, 0.05438232421875, -0.0890\n",
"[-0.02667236328125, 0.036651611328125, -0.1630859375, -0.0904541015625, -0.022430419921875, -0.09545\n"
]
}
],
"source": [
"res_query = embedding.embed_query(\"The test information\")\n",
"res_document = embedding.embed_documents([\"test1\", \"another test\"])\n",
"print(res_query[:5])\n",
"print(res_document[1][:5])"
"text2 = (\n",
" \"LangGraph is a library for building stateful, multi-actor applications with LLMs\"\n",
")\n",
"two_vectors = embeddings.embed_documents([text, text2])\n",
"for vector in two_vectors:\n",
" print(str(vector)[:100]) # Show the first 100 characters of the vector"
]
},
{
"cell_type": "markdown",
"id": "3fba556a-b53d-431c-b0c6-ffb1e2fa5a6e",
"metadata": {},
"source": [
"## API Reference\n",
"\n",
"For detailed documentation of all `FireworksEmbeddings` features and configurations head to the [API reference](https://api.python.langchain.com/en/latest/embeddings/langchain_fireworks.embeddings.FireworksEmbeddings.html)."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "poetry-venv-2",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "poetry-venv-2"
"name": "python3"
},
"language_info": {
"codemirror_mode": {
Expand All @@ -110,7 +259,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
"version": "3.11.4"
}
},
"nbformat": 4,
Expand Down
Loading