Skip to content

langchain-ai/langgraph-supervisor

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

35 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

🤖 LangGraph Multi-Agent Supervisor

A Python library for creating hierarchical multi-agent systems using LangGraph. Hierarchical systems are a type of multi-agent architecture where specialized agents are coordinated by a central supervisor agent. The supervisor controls all communication flow and task delegation, making decisions about which agent to invoke based on the current context and task requirements.

Features

  • 🤖 Create a supervisor agent to orchestrate multiple specialized agents
  • 🛠️ Tool-based agent handoff mechanism for communication between agents
  • 📝 Flexible message history management for conversation control

This library is built on top of LangGraph, a powerful framework for building agent applications, and comes with out-of-box support for streaming, short-term and long-term memory and human-in-the-loop

Installation

pip install langgraph-supervisor

Quickstart

Here's a simple example of a supervisor managing two specialized agents:

Supervisor Architecture

pip install langgraph-supervisor langchain-openai

export OPENAI_API_KEY=<your_api_key>
from langchain_openai import ChatOpenAI

from langgraph_supervisor import create_supervisor
from langgraph.prebuilt import create_react_agent

model = ChatOpenAI(model="gpt-4o")

# Create specialized agents

def add(a: float, b: float) -> float:
    """Add two numbers."""
    return a + b

def multiply(a: float, b: float) -> float:
    """Multiply two numbers."""
    return a * b

def web_search(query: str) -> str:
    """Search the web for information."""
    return (
        "Here are the headcounts for each of the FAANG companies in 2024:\n"
        "1. **Facebook (Meta)**: 67,317 employees.\n"
        "2. **Apple**: 164,000 employees.\n"
        "3. **Amazon**: 1,551,000 employees.\n"
        "4. **Netflix**: 14,000 employees.\n"
        "5. **Google (Alphabet)**: 181,269 employees."
    )

math_agent = create_react_agent(
    model=model,
    tools=[add, multiply],
    name="math_expert",
    prompt="You are a math expert. Always use one tool at a time."
)

research_agent = create_react_agent(
    model=model,
    tools=[web_search],
    name="research_expert",
    prompt="You are a world class researcher with access to web search. Do not do any math."
)

# Create supervisor workflow
workflow = create_supervisor(
    [research_agent, math_agent],
    model=model,
    prompt=(
        "You are a team supervisor managing a research expert and a math expert. "
        "For current events, use research_agent. "
        "For math problems, use math_agent."
    )
)

# Compile and run
app = workflow.compile()
result = app.invoke({
    "messages": [
        {
            "role": "user",
            "content": "what's the combined headcount of the FAANG companies in 2024?"
        }
    ]
})

Message History Management

You can control how agent messages are added to the overall conversation history of the multi-agent system:

Include full message history from an agent:

Full History

workflow = create_supervisor(
    agents=[agent1, agent2],
    output_mode="full_history"
)

Include only the final agent response:

Last Message

workflow = create_supervisor(
    agents=[agent1, agent2],
    output_mode="last_message"
)

Multi-level Hierarchies

You can create multi-level hierarchical systems by creating a supervisor that manages multiple supervisors.

research_team = create_supervisor(
    [research_agent, math_agent],
    model=model,
).compile(name="research_team")

writing_team = create_supervisor(
    [writing_agent, publishing_agent],
    model=model,
).compile(name="writing_team")

top_level_supervisor = create_supervisor(
    [research_team, writing_team],
    model=model,
).compile(name="top_level_supervisor")

Adding Memory

You can add short-term and long-term memory to your supervisor multi-agent system. Since create_supervisor() returns an instance of StateGraph that needs to be compiled before use, you can directly pass a checkpointer or a store instance to the .compile() method:

from langgraph.checkpoint.memory import InMemorySaver
from langgraph.store.memory import InMemoryStore

checkpointer = InMemorySaver()
store = InMemoryStore()

model = ...
research_agent = ...
math_agent = ...

workflow = create_supervisor(
    [research_agent, math_agent],
    model=model,
    prompt="You are a team supervisor managing a research expert and a math expert.",
)

# Compile with checkpointer/store
app = workflow.compile(
    checkpointer=checkpointer,
    store=store
)

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages