Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

⚡️ Speed up method AstraDBVectorStoreComponent.reset_database_list by 30% in PR #6028 (PlaygroundPage) #6182

Open
wants to merge 2 commits into
base: PlaygroundPage
Choose a base branch
from

Conversation

codeflash-ai[bot]
Copy link
Contributor

@codeflash-ai codeflash-ai bot commented Feb 6, 2025

⚡️ This pull request contains optimizations for PR #6028

If you approve this dependent PR, these changes will be merged into the original PR branch PlaygroundPage.

This PR will be automatically closed if the original PR is merged.


📄 30% (0.30x) speedup for AstraDBVectorStoreComponent.reset_database_list in src/backend/base/langflow/components/vectorstores/astradb.py

⏱️ Runtime : 1.41 millisecond 1.09 millisecond (best of 103 runs)

📝 Explanation and details

To optimize the runtime and memory usage of the given Python program, here are a few strategies to make it more efficient:

  1. Avoid Multiple Calls to get_database_list: Cache the result of get_database_list to avoid multiple calls.
  2. Utilize List Comprehension for Efficiency: Optimize list comprehensions for better readability and execution speed.

Here's the revised version.

Explanation.

  1. Caching: The call to self.get_database_list is stored in the variable database_list and this cached result is utilized in creating database_options. This ensures that the get_database_list function is only called once, improving performance.

  2. Readable List Comprehensions: Both options and options_metadata list comprehensions are optimized to be more efficient and clear.

These adjustments help improve the runtime and memory usage of the program by reducing unnecessary function calls and making list comprehensions more efficient.

Correctness verification report:

Test Status
⚙️ Existing Unit Tests 🔘 None Found
🌀 Generated Regression Tests 15 Passed
⏪ Replay Tests 🔘 None Found
🔎 Concolic Coverage Tests 🔘 None Found
📊 Tests Coverage undefined
🌀 Generated Regression Tests Details
import pytest  # used for our unit tests
# function to test
from langflow.base.vectorstores.model import LCVectorStoreComponent
from langflow.components.vectorstores.astradb import \
    AstraDBVectorStoreComponent

# unit tests

# Basic Functionality
def test_standard_input():
    build_config = {"api_endpoint": {"options": [], "value": ""}}
    component = AstraDBVectorStoreComponent()
    component.get_database_list = lambda: {
        "db1": {"collections": ["col1"], "api_endpoint": "endpoint1"},
        "db2": {"collections": ["col2"], "api_endpoint": "endpoint2"}
    }
    codeflash_output = component.reset_database_list(build_config)

def test_empty_database_list():
    build_config = {"api_endpoint": {"options": [], "value": ""}}
    component = AstraDBVectorStoreComponent()
    component.get_database_list = lambda: {}
    codeflash_output = component.reset_database_list(build_config)

# Edge Cases
def test_single_database_entry():
    build_config = {"api_endpoint": {"options": [], "value": ""}}
    component = AstraDBVectorStoreComponent()
    component.get_database_list = lambda: {
        "db1": {"collections": ["col1"], "api_endpoint": "endpoint1"}
    }
    codeflash_output = component.reset_database_list(build_config)


def test_exception_during_initialization():
    build_config = {"api_endpoint": {"options": [], "value": ""}}
    component = AstraDBVectorStoreComponent()
    component.get_database_list = lambda: 1 / 0  # Simulate an exception
    with pytest.raises(ValueError) as excinfo:
        component.reset_database_list(build_config)

# Large Scale Test Cases
def test_large_number_of_databases():
    build_config = {"api_endpoint": {"options": [], "value": ""}}
    component = AstraDBVectorStoreComponent()
    component.get_database_list = lambda: {
        f"db{i}": {"collections": [f"col{i}"], "api_endpoint": f"endpoint{i}"} for i in range(1000)
    }
    codeflash_output = component.reset_database_list(build_config)
# codeflash_output is used to check that the output of the original code is the same as that of the optimized code.

import pytest  # used for our unit tests
# function to test
from langflow.base.vectorstores.model import LCVectorStoreComponent
from langflow.components.vectorstores.astradb import \
    AstraDBVectorStoreComponent


# unit tests
class TestAstraDBVectorStoreComponent:
    @pytest.fixture
    def component(self):
        class MockComponent(AstraDBVectorStoreComponent):
            def get_database_list(self):
                return self.mock_database_list

        return MockComponent()

    def test_basic_multiple_databases(self, component):
        component.mock_database_list = {
            "db1": {"collections": ["col1"], "api_endpoint": "http://example.com/db1"},
            "db2": {"collections": ["col2"], "api_endpoint": "http://example.com/db2"},
        }
        build_config = {"api_endpoint": {}}
        codeflash_output = component.reset_database_list(build_config)

    def test_basic_single_database(self, component):
        component.mock_database_list = {
            "db1": {"collections": ["col1"], "api_endpoint": "http://example.com/db1"},
        }
        build_config = {"api_endpoint": {}}
        codeflash_output = component.reset_database_list(build_config)

    def test_edge_empty_database_list(self, component):
        component.mock_database_list = {}
        build_config = {"api_endpoint": {}}
        codeflash_output = component.reset_database_list(build_config)

Codeflash

…by 30% in PR #6028 (`PlaygroundPage`)

To optimize the runtime and memory usage of the given Python program, here are a few strategies to make it more efficient: 

1. **Avoid Multiple Calls to `get_database_list`**: Cache the result of `get_database_list` to avoid multiple calls.
2. **Utilize List Comprehension for Efficiency**: Optimize list comprehensions for better readability and execution speed.

Here's the revised version.



### Explanation.
1. **Caching**: The call to `self.get_database_list` is stored in the variable `database_list` and this cached result is utilized in creating `database_options`. This ensures that the `get_database_list` function is only called once, improving performance.
  
2. **Readable List Comprehensions**: Both `options` and `options_metadata` list comprehensions are optimized to be more efficient and clear.

These adjustments help improve the runtime and memory usage of the program by reducing unnecessary function calls and making list comprehensions more efficient.
@codeflash-ai codeflash-ai bot added the ⚡️ codeflash Optimization PR opened by Codeflash AI label Feb 6, 2025
@dosubot dosubot bot added the size:XS This PR changes 0-9 lines, ignoring generated files. label Feb 6, 2025
@dosubot dosubot bot added the python Pull requests that update Python code label Feb 6, 2025
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
⚡️ codeflash Optimization PR opened by Codeflash AI python Pull requests that update Python code size:XS This PR changes 0-9 lines, ignoring generated files.
Projects
None yet
Development

Successfully merging this pull request may close these issues.

0 participants