-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgraph_generation.py
255 lines (184 loc) · 8.61 KB
/
graph_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import cv2
import numpy as np
import torch
from torch import nn
import torch_geometric
torch.manual_seed(0)
np.random.seed(0)
class AngleNet(torch.nn.Module):
def __init__(self, hidden_dim):
super().__init__()
self.conv_w1 = nn.Conv2d(1, hidden_dim//4, 3)
self.bn_w1 = nn.BatchNorm2d(hidden_dim//4)
self.pool_w1 = nn.MaxPool2d(3)
self.conv_w2 = nn.Conv2d(hidden_dim//4, hidden_dim//4, 3)
self.bn_w2 = nn.BatchNorm2d(hidden_dim//4)
self.flatten = nn.Flatten()
self.lin_reg = nn.Linear(hidden_dim, 180)
def encode_w(self, w):
y = self.bn_w1(self.conv_w1(w.unsqueeze(dim=1))).relu()
y = self.pool_w1(y)
y = self.bn_w2(self.conv_w2(y)).relu()
return self.flatten(y)
def forward(self, windows):
y = self.encode_w(windows)
return self.lin_reg(y)
class GraphGeneration():
def __init__(self, n_knn, th_edges_similarity, th_mask=127, wsize=15, sampling_ratio=0.1, network=None):
self.n_knn = n_knn
self.th_edges_similarity = th_edges_similarity
self.th_mask = th_mask
self.wsize = wsize
self.sampling_ratio = sampling_ratio
if network is None:
self.load_network_model()
else:
self.network = network
def load_network_model(self):
self.network = AngleNet(hidden_dim=128)
self.network.load_state_dict(torch.load("checkpoints/CP_angle.pth"))
self.network.eval()
def exec(self, mask, edges_filtering=True, debug=True):
mask[mask < self.th_mask] = 0
mask[mask != 0] = 255
# DISTANCE IMAGE
dist_img = cv2.distanceTransform(mask, cv2.DIST_L2, 3)
dist_img = cv2.GaussianBlur(dist_img,(3,3),0)
rv_graph = self.run_graph_generation(mask, dist_img)
if rv_graph is None:
return None, None
else:
nodes, edges, edges_knn, nodes_dir, windows, points_maxmask = rv_graph
if edges.shape[0] == 0:
return None, None
if edges_filtering:
edges = self.filter_edges_from_mask(nodes, edges, mask)
# OUTPUT
nodes_dict = {}
max_r = np.max(dist_img)
for it, n in enumerate(nodes):
n_pos = tuple([int(n[0]), int(n[1])])
n_dir = tuple([nodes_dir[it,0], nodes_dir[it,1]])
r = dist_img[tuple(n_pos)]
nodes_dict[it] = {"pos": n_pos, "dir": n_dir, "window": windows[it], "r": r/max_r, "r_raw": r}
self.nodes_pos = nodes
self.nodes_dir = nodes_dir
self.edges_np = np.array(edges).T
self.dist_img = dist_img
self.points_maxmask = points_maxmask
return nodes_dict, edges
def edges_similarity_fast(self, matrix_scores, X, edges, edges_norm, adj_fake, th=0.25):
edges_tuples = edges.T
E = np.repeat(edges_norm.reshape(1,-1), matrix_scores.shape[0], axis=0)
X2 = np.repeat(X[edges].reshape(1,-1), matrix_scores.shape[0], axis=0)
M = matrix_scores * X2 * adj_fake
pos_matrix_scores = M > th
E_pos_zero = E.copy()
E_pos_zero[pos_matrix_scores == False] = 0
if E_pos_zero.shape[1] > 0:
E_pos_max = np.repeat(np.max(E_pos_zero, axis=1).reshape(-1,1), matrix_scores.shape[1], axis=1)
E_pos_inf = E.copy()
E_pos_inf[pos_matrix_scores == False] = np.inf
E_pos_min = np.repeat(np.min(E_pos_inf, axis=1).reshape(-1,1), matrix_scores.shape[1], axis=1)
W_pos = 1 - (E - E_pos_min) / E_pos_max
W_pos[pos_matrix_scores == False] = 0
S_pos = M * W_pos
S_pos[pos_matrix_scores == False] = 0
pos_indeces = np.argmax(S_pos, axis=1)
pos_edges = edges_tuples[pos_indeces]
else:
pos_edges = []
neg_matrix_scores = M < -th
E_neg_zero = E.copy()
E_neg_zero[neg_matrix_scores == False] = 0
if E_neg_zero.shape[1] > 0:
E_neg_max = np.repeat(np.max(E_neg_zero, axis=1).reshape(-1,1), matrix_scores.shape[1], axis=1)
E_neg_inf = E.copy()
E_neg_inf[neg_matrix_scores == False] = np.inf
E_neg_min = np.repeat(np.min(E_neg_inf, axis=1).reshape(-1,1), matrix_scores.shape[1], axis=1)
W_neg = 1 - (E - E_neg_min) / E_neg_max
W_neg[neg_matrix_scores == False] = 0
S_neg = M * W_neg
S_neg[neg_matrix_scores == False] = 0
neg_indeces = np.argmin(S_neg, axis=1)
neg_edges = edges_tuples[neg_indeces]
else:
neg_edges = []
new_edges_fast = np.concatenate([pos_edges, neg_edges])
return new_edges_fast
def cosine_sim(self, a, b, eps=1e-8):
a_n, b_n = a.norm(dim=1)[:, None], b.norm(dim=1)[:, None]
a_norm = a / torch.clamp(a_n, min=eps)
b_norm = b / torch.clamp(b_n, min=eps)
return torch.mm(a_norm, b_norm.transpose(0, 1))
def similarity_score_nodes_edges(self, nodes, edges, nodes_angles, debug=False):
edges_dirs, edges_norm, adj_fake = self.edges_prep(edges, nodes)
edges_dirs = torch.Tensor(edges_dirs)
angles = torch.Tensor(np.array(nodes_angles))
nodes_dir = torch.stack([torch.sin(angles), torch.cos(angles)]).T
X = torch.abs(self.cosine_sim(nodes_dir, nodes_dir))
similarity_score_edges = self.cosine_sim(nodes_dir, edges_dirs) * torch.abs(torch.Tensor(adj_fake))
return similarity_score_edges, X, edges_norm, adj_fake
def edges_prep(self, edges, nodes, debug=False):
nodes_0 = nodes[edges[0,:]]
nodes_1 = nodes[edges[1,:]]
edge_dirs = (nodes_1 - nodes_0).astype(np.float32)
edge_norms = np.linalg.norm(edge_dirs, axis=1)
edge_dirs[:,0] = edge_dirs[:,0] / edge_norms
edge_dirs[:,1] = edge_dirs[:,1] / edge_norms
edge_dirs = edge_dirs.reshape(-1,2)
edges_list = list(zip(edges[0], edges[1]))
adj_fake = np.zeros((len(nodes), len(edges_list)))
for it, (e0,e1) in enumerate(edges_list):
adj_fake[e0,it] = 1
adj_fake[e1,it] = -1
return edge_dirs, edge_norms, adj_fake
def orientations_from_network(self, windows):
windows = torch.Tensor(np.array(windows))
preds = self.network(windows).sigmoid().detach().cpu().numpy()
angles = np.deg2rad(np.argmax(preds, axis=1))
dirs = np.stack([np.sin(angles), np.cos(angles)]).T
return dirs, angles
def run_graph_generation(self, mask, dist_img):
# local maximus
max_image = cv2.dilate(dist_img, np.ones((3,3)))
maxmask = (dist_img == max_image) & mask
x,y = np.nonzero(maxmask)
points_maxmask = np.stack([x,y]).T
# fps
points = torch.Tensor(points_maxmask)
indices_fps = torch_geometric.nn.fps(points, ratio=self.sampling_ratio)
reduced = points[indices_fps].detach().cpu().numpy().astype(int)
# windows
l = (self.wsize-1)//2
windows, points = [], []
for p in reduced:
w = dist_img[p[0]-l:p[0]+l+1, p[1]-l:p[1]+l+1]
if w.shape == (self.wsize, self.wsize):
windows.append(w)
points.append(p)
points = np.array(points)
if points.shape[0] == 0:
return None
# orientations
W = np.array(windows) / np.max(windows)
points_dirs, points_angles = self.orientations_from_network(W)
# edges with knn
edges_knn = torch_geometric.nn.knn_graph(torch.Tensor(points), self.n_knn).detach().cpu().numpy()
# matrix score
matrix_scores, X, edges_norm, adj_fake = self.similarity_score_nodes_edges(points, edges_knn, points_angles)
# edges computation
new_edges = self.edges_similarity_fast(matrix_scores, X, edges_knn, edges_norm, adj_fake, th=self.th_edges_similarity)
return points, new_edges, edges_knn, points_dirs, W, points_maxmask
def filter_edges_from_mask(self, nodes, edges, mask):
mask_large = cv2.dilate(mask,np.ones((5,5),np.uint8),iterations = 2)
nodes_0 = nodes[edges[:,0]]
nodes_1 = nodes[edges[:,1]]
distances = np.linalg.norm(nodes_0 - nodes_1, axis=1)
indeces = np.where(distances > np.mean(distances))[0]
mid_points_to_test = ((nodes_0[indeces] + nodes_1[indeces]) / 2).astype(int)
indeces_zero = np.where(mask_large[mid_points_to_test[:,0], mid_points_to_test[:,1]] == 0)[0]
mask = np.ones(edges.shape[0], np.bool)
mask[indeces[indeces_zero]] = 0
new_edges = edges[mask]
return new_edges