The aim of this project is to provide a curated list of high-quality Deep Learning Resources that I have found valuable and insightful. These are organised into separate sections that can be seen in the Table of Contents below.
- Deep Learning Theory
- Computer vision
- Unsupervised learning
- Data Augmentation
- Lectures & Tutorials
- Explainable AI
- Python & DL Cheatsheets
- Cool DL examples & repos
- AI newsletters & blogs
First, a quick catch-up into the State of the Art in Deep learning 2019:
-
MIT's Lex Fridman: https://www.slideshare.net/noumfone/deep-learning-state-of-the-art-2019-mit-by-lex-fridman
-
Nathan Benaich: https://www.stateof.ai/
Loss landscape
This section will provide useful links for an introduction into core Deep learning concepts from begginer to advanced level.
-
Quick intro:
- Deep learning in 100 lines of code: https://towardsdatascience.com/the-keys-of-deep-learning-in-100-lines-of-code-907398c76504
-
Beginner level:
-
Stanford CS 231n CNNs class: http://cs231n.stanford.edu/
-
Deep Learning Book by Ian Goodfellow, Yoshua Bengio and Aaron Courville: http://www.deeplearningbook.org/
-
Stanford Deep Learing Tutorial: http://deeplearning.stanford.edu/tutorial/
-
Neural Networks and Deep Learning: http://neuralnetworksanddeeplearning.com/about.html
-
Chris Olah's personal github: http://colah.github.io/
-
-
Intermediate to Advanced level
-
Imperial College London Deep learning Course (Jupyter notebook): https://github.com/MatchLab-Imperial/deep-learning-course/
-
Pattern Recognition and Machine Learning Book by Christopher M. Bishop: https://www.microsoft.com/en-us/research/people/cmbishop/#!prml-book
-
Fast AI: https://www.fast.ai/
-
Distill Pub for interpretable AI: https://distill.pub/
-
Chris Olah's github: http://colah.github.io/
-
Papers with code: https://paperswithcode.com/
-
Deep learning tricks: https://github.com/kmkolasinski/deep-learning-notes/blob/master/seminars/2018-12-Improving-DL-with-tricks/Improving_deep_learning_models_with_bag_of_tricks.pdf
-
NVIDIA Deep Learning examples
-
This section includes useful Github repositories to get going in training Computer vision algorithms.
-
Classification
-
ImageNet Top Board https://paperswithcode.com/sota/image-classification-on-imagenet
-
Keras model library https://github.com/keras-team/keras-applications/tree/master/keras_applications
-
Pytorch model library https://pytorch.org/docs/stable/torchvision/models.html
-
Efficient Net https://ai.googleblog.com/2019/05/efficientnet-improving-accuracy-and.html?m=1
-
Learning Semantic Boundaries from Noisy Annotations https://github.com/nv-tlabs/STEAL
-
Ensemble methods https://machinelearningmastery.com/ensemble-methods-for-deep-learning-neural-networks/
-
-
Object detection
-
Tensorflow Object Detection API https://github.com/tensorflow/models/tree/master/research/object_detection
-
Mask R-CNN Pytorch: https://github.com/facebookresearch/maskrcnn-benchmark Keras: https://github.com/matterport/Mask_RCNN
-
RetinaNet Pytorch: https://github.com/yhenon/pytorch-retinanet Keras: https://github.com/fizyr/keras-retinanet
-
YOLO v3 Pytorch: https://github.com/ultralytics/yolov3 Keras: https://github.com/qqwweee/keras-yolo3
-
RefineDet Pytorch: https://github.com/DrSleep/refinenet-pytorch Keras: https://github.com/Attila94/refinenet-keras
-
SNIPER MXNet: https://github.com/mahyarnajibi/SNIPER
-
M2Det Pytorch: https://github.com/qijiezhao/M2Det
-
-
Segmentation
-
UNet Pytorch: https://github.com/milesial/Pytorch-UNet Keras: https://github.com/zhixuhao/unet
-
Attention U-Net Pytorch: https://github.com/LeeJunHyun/Image_Segmentation#attention-u-net
-
SegNet Pytorch: https://github.com/ZijunDeng/pytorch-semantic-segmentation Keras: https://github.com/divamgupta/image-segmentation-keras
-
DeepLab v3 Pytorch: https://github.com/jfzhang95/pytorch-deeplab-xception Keras: https://github.com/bonlime/keras-deeplab-v3-plus
-
Reversible UNet Pytorch: https://github.com/RobinBruegger/PartiallyReversibleUnet
-
Fast Semantic Segmentation Network Pytorch: https://github.com/DeepVoltaire/Fast-SCNN
-
-
Automatic Hyperparameter Search
-
Talos - automatic Hyperparameter tuning https://github.com/autonomio/talos
-
Fast prototyping with keras models https://github.com/maxpumperla/hyperas?source=post_page & https://github.com/hyperopt/hyperopt?source=post_page
-
Hyperparameter tuning magic from Francois Chollet https://twitter.com/fchollet/status/1141532631810527232?lang=en
-
-
GAN lab & visualisation https://poloclub.github.io/ganlab/
-
Style GAN https://github.com/NVlabs/stylegan
-
Compare GANs https://github.com/google/compare_gan
-
Latent GAN https://github.com/SummitKwan/transparent_latent_gan#1-instructions-on-the-online-demo
This section consists in a list of data augmentation packages that can be used for model training for a more robust and generalizable model.
-
Albumentations: Data transformation & augmentation package in Numpy https://github.com/albu/albumentations
-
Python library for augmenting images https://github.com/aleju/imgaug
-
Augmentor: image augmentation library in Python for machine learning https://github.com/mdbloice/Augmentor
-
1000x Faster Data Augmentation from Berkeley Artificial Intelligence Research (BAIR) https://bair.berkeley.edu/blog/2019/06/07/data_aug/
-
AutoAugment: Learning Augmentation Policies from Data https://github.com/DeepVoltaire/AutoAugment
This section includes livestreams of TOP AI conferences or DL tutorials.
-
ICML IJCAI ECAI 2018 Conference Videos https://www.youtube.com/channel/UCvqEpkx-HQ2nDMT-ob-AADg/videos
-
The Artificial Intelligence Channel https://www.youtube.com/user/Maaaarth
-
NVIDIA Developer https://www.youtube.com/user/NVIDIADeveloper
-
CVPR lectures/tutorials https://www.youtube.com/channel/UC0n76gicaarsN_Y9YShWwhw/videos
-
Google Developers https://www.youtube.com/user/GoogleDevelopers
-
CogX https://www.youtube.com/channel/UCvL4EwcLAGbAvCvwKOzDEpw
-
RAAIS https://www.youtube.com/channel/UCL78WE5txuSu94gY5qrvU8w/featured
-
Lex Fridman's AI Podcast https://www.youtube.com/user/lexfridman
-
ARXIv Insights https://www.youtube.com/channel/UCNIkB2IeJ-6AmZv7bQ1oBYg/videos
-
ICML 2019 notes https://david-abel.github.io/notes/icml_2019.pdf
-
All posters from ICML 2019 https://postersession.ai/
This section has a selection of python packages that try to make DL model outcomes more explainable.
-
Seldon - Alibi https://github.com/SeldonIO/alibi
-
XAI - an explainability tool for machine learning maintained by The Institute for Ethical AI & ML https://github.com/ethicalml/xai
-
Deepmind's blog on Robust and Verified AI https://deepmind.com/blog/robust-and-verified-ai/
-
Microsoft python package for training interpretable models and explaining blackbox systems https://github.com/microsoft/interpret
-
Adversarial Robustness Toolbox https://github.com/IBM/adversarial-robustness-toolbox
-
Ludwig - a toolbox that allows to train and test deep learning models without code https://uber.github.io/ludwig/
-
SHAP - a unified approach to explain the output of any machine learning model https://github.com/slundberg/shap/blob/master/README.md
-
Anatomy of an AI system: The Amazon Echo as an anatomical map of human labor, data and planetary resources https://anatomyof.ai/
-
Sanity Checks for Saliency Maps NeurIPS Paper https://papers.nips.cc/paper/8160-sanity-checks-for-saliency-maps.pdf
-
DeepExplain: attribution methods for Deep Learning https://github.com/marcoancona/DeepExplain
-
IBM fairness AI https://aif360.mybluemix.net/
-
Great talk about Expert-level python tricks & concepts from PyData: https://www.youtube.com/watch?v=cKPlPJyQrt4
-
Python tips: http://book.pythontips.com/
-
AI cheatsheets: https://github.com/kailashahirwar/cheatsheets-ai
-
Python 3 Tricks https://datawhatnow.com/things-you-are-probably-not-using-in-python-3-but-should/
This section includes some cool models, tricks and miscellaneous DL Github repos.
-
Kito - a Keras inference time optimizer https://github.com/ZFTurbo/Keras-inference-time-optimizer
-
How to fit any dataset with a single parameter https://github.com/Ranlot/single-parameter-fit
-
A Recipe for Training Neural Networks https://karpathy.github.io/2019/04/25/recipe/
-
Activation Atlases https://github.com/PolyAI-LDN/conversational-datasetshttps://blog.openai.com/introducing-activation-atlases/
-
Similarity visualisation https://github.com/GWUvision/Similarity-Visualization
-
Deep painterly harmonization https://github.com/luanfujun/deep-painterly-harmonization#
-
AI playground https://www.nvidia.com/en-us/research/ai-playground/?ncid=so-twi-nz-92489
-
BigGAN generation with TF Hub https://colab.research.google.com/github/tensorflow/hub/blob/master/examples/colab/biggan_generation_with_tf_hub.ipynb#scrollTo=Cd1dhL4Ykbm7
-
Learning resources https://sgfin.github.io/learning-resources/
-
Deep image prior https://dmitryulyanov.github.io/deep_image_prior
-
DL recommendation model https://venturebeat.com/2019/07/02/facebook-open-sources-dlrm-a-deep-learning-recommendation-model/
-
3D deep learning from BMVA https://bmva.weebly.com/20th-feb-deep-learning-in-3d.html?platform=hootsuite
This section includes some newsletters and personal blogs I have found interesting and worth reading.
-
Nathan.ai http://newsletter.airstreet.com/
-
Exponential View https://www.exponentialview.co/
-
Andrej Karpathy http://karpathy.github.io/
-
Chris Olah http://colah.github.io/
-
OpenAI https://openai.com/blog/
-
Google Research Blog https://ai.googleblog.com/