Skip to content

This module enables to use potentials extracted from the literature. It has the following features: * One or several degrees of freedom * One or several electronic states * For each electronic state, the energy, gradient and hessian can be obtained in the diabatic or adiabatic representations

Notifications You must be signed in to change notification settings

lauvergn/QuantumModelLib

Repository files navigation

QuantumModelLib

QuantumModelLib or QML* is a free software under the MIT Licence.

date: 01/09/2024

    Copyright (c) 2022 David Lauvergnat [1]
      with contributions of:
        Félix MOUHAT [2]
        Liang LIANG [3]
        Emanuele MARSILI [1,4]
        Evaristo Villaseco Arribas [5]

[1]: Institut de Chimie Physique, UMR 8000, CNRS-Université Paris-Saclay, France [2]: Laboratoire PASTEUR, ENS-PSL-Sorbonne Université-CNRS, France [3]: Maison de la Simulation, CEA-CNRS-Université Paris-Saclay,France [4]: Durham University, Durham, UK [5]: Department of Physics, Rutgers University, Newark, New Jersey 07102, USA

* Originally, it has been developed during the Quantum-Dynamics E-CAM project : https://www.e-cam2020.eu/quantum-dynamics

1) Installation

From the QuantumModelLib directory, when make is executated, the libQMLibFull_XXX_optx_ompy_lapakz.a must be created (ex: libQMLibFull_gfortran_opt1_omp1_lapack1). XXX is the compiler name and x, y and z are 0/1 when flags are turn off/on. They correspond to OPT (compiler optimzation), OpenMP and Lapack/blas, respectively.

   This version works with:
       gfortran 9.0 (linux and macOS)
       ifort/ifx    19

2) Link the library to your code

When lapack/blas are not linked to the library:

   gfortran ....   $QuantumModelLib_path/libQMLibFull_XXX_optx_ompy_lapak0.a

or with lapack/blas (linux)

   gfortran ....   $QuantumModelLib_path/libQMLibFull_XXX_optx_ompy_lapak0.a -llapack -lblas

QuantumModelLib_path contains the path of the QuantumModelLib

3) In your Fortan code

In the following, it shows how to initialize, compute with the driver subroutines (the full library is needed, the Fortran module files are not required)

3a1) Initialization of the model (the Potential)

  CALL sub_Init_Qmodel(ndim,nsurf,pot_name,adiabatic,option)
where
  - ndim       : the number of degree(s) of freedom [integer]
  - nsurf      : the number of electronic surface(s) (adiabatic or diabatic) [integer]
  - pot_name   : the name of the potential or model (phenol, Tully, HenonHeiles ...) [string of characters]
  - adiabatic  : flag (.TRUE. or .FALSE.) [logical]
  - option     : option, to be able to select a model with several options (Tully ...) [integer]

he list of available models is given below

Example:

  ndim  = 2
  nsurf = 3
  CALL sub_Init_Qmodel(ndim,nsurf,'phenol',.FALSE.,0)

It initializes the phenol potential (2D and 3 PES). => Computation of the diabatic surface

3a2) Initialization of the potential (reading the model)

 CALL sub_Read_Qmodel(ndim,nsurf,nio)
 where
  - ndim       : the number of degree(s) of freedom [integer]
  - nsurf      : the number of electronic surface(s) (adiabatic or diabatic) [integer]
  - nio        : file unit where the namelist is read. It can be the standard unit [integer]

Then, the &potential namelist is read. In the following exemple, the 2+1D-retinal model ('Retinal_JPCB2000') is read.

  &potential
    pot_name='Retinal_JPCB2000' ! potential surface name
    ndim=3 PubliUnit=f
    adiabatic=t
    Phase_checking=f
     /

It initializes the 2+1D-retinal model (ndim=3). For this model, fhe number of electronic surfaces is automatically set up to 2. => adiabatic=t : Computation of the adiabatic surface: => Phase_checking=f : The adiabatic vector phases are not checked between several calculations => PubliUnit=f : The atomic units are used

3a3) Initialization (extra)

Some extra parameters can be initialized with specific procedures:

  • Phase_Checking (default: .FALSE. ) for the adiabatic calculations: WARNING: Before the version 23.3, the default was .TRUE.

    When Phase_Checking=.TRUE.: The eigenvector phases are checked and changed through overlapp beetween the current and reference eigenvectors. The two (and only two) eigenvectors are degenerated a rotation may occur (experimental)

    When Phase_Checking=.FALSE.: The eigenvector phases are not checked

    To change Phase_Checking behavior:

  CALL set_Qmodel_Phase_Checking(Phase_Checking)
  • Phase_Following (default: .FALSE. ) for the adiabatic calculations: WARNING: Before the version 23.2, the default was .TRUE.

    This feature is only relevant if Phase_Checking=.TRUE. When Phase_Checking=.TRUE., the reference eigenvectors are the ones of the previous evaluation. When Phase_Checking=.FALSE., the reference eigenvectors are the ones of the first evaluation.

    To change Phase_Following behavior:

  CALL set_Qmodel_Phase_Following(Phase_Following)
  • Other parameters can be changed

    or it can be set up while reading the model (see 3a2).

3b) Potential energy surface(s), PES, evaluation

   CALL sub_Qmodel_V(V,Q)
  where
    Q(:)   is the ndim coordinates (vector of real(kind=8))
    V(:,:) is PES and a  nsurf x nsurf matrix of real (kind=8)
  Remarks:
    - when adiabatic is set to .TRUE., V(:,:) is a diagonal matrix.
    - Use sub_Qmodel_VG(V,G,Q) to get the potential and the gradient
          G(:,:,:) are real (kind=8) of nsurf x nsurf x ndim
    - Use sub_Qmodel_VGH(V,G,H,Q) to get the potential, the gradient and the hessian
          H(:,:,:,:) are real (kind=8) of nsurf x nsurf x ndim x ndim
    - Use sub_Qmodel_VG_NAC(V,G,NAC,Q) to get the potential, the gradient and the
          non-adiabatic couplings (NAC).
          NAC(:,:,:) are real (kind=8) of nsurf x nsurf x ndim

3c) Potential energy surface with vibrational adiabatic separation

This feature can be used only when the model is read. Therefore in the initialization with sub_Init_Qmodel pot_name must be "read_model". Then:

(i) The potential must be read as a namelist:

  &potential
      pot_name='hbond' ! potential surface name
      Vib_adia=t
      list_act=1
      read_nml=f
      nb_channels=6
  /

In this example the 'Hbond' potential is used within the adiabatic separation (Vib_adia=t). Read_nml=f, the specific namelist for 'hbond' model is not read. The number of channels (nsurf) is 6 list_act is a table which enables to select the active coordinate(s) (here the first one only) The inactive coordinates are just the remaining coordinates (here 2)

(ii) A basis set must be read for the inactive coordinates:

  &basis_nD name='boxAB' nb=64 nq=64 A=-2.5 B=2.5 /

Here, it is a 1D basis set (particle-in-a-box), with

  • 64 basis function (nb)
  • 64 grid points (nq)
  • The range of the coordinate is [A,B]

WARNING: It is working only with ONE inactive variable.

The following subroutine enables to get the effective Hamiltonian along $Qact(:)$.

  CALL sub_Qmodel_tab_HMatVibAdia(tab_MatH,Q,nb_terms)

The table tab_MatH(nsurf,nsurf,nb_terms) contains:

  • Heff: tab_MatH(nsurf,nsurf,1) [1 matrix]
  • F2 terms: tab_MatH(nsurf,nsurf,2:...) [ (nb_act+1)nb_act/2 matrices)]
  • F1 terms: tab_MatH(nsurf,nsurf,...:nb_terms) [ nb_act matrices ]

3d) Get the metric tensor, GGdef

  CALL get_Qmodel_GGdef(GGdef)

where: $GGdef(:,:)$ is the ndim x ndim matrix of real (kind=8)

Most of the models are associated with a specific kinetic energy operator (KEO) Here, it is given through a constant metric tensor, GGdef, so the that the KEO is:

$\hat{T} = -\frac{1}{2} \sum_{ij} \frac{\partial}{\partial Q_i} GGdef(i,j) \frac{\partial}{\partial Q_j}$

Its diagonal components, $GGdef(i,i)$, can be view as the invers of masses ($1/M_i$) The volume element, $d\tau$, is:

$d\tau = dQ_1.dQ_2 ... dQ_{ndim}$

Remark: The metric tensor can be modified:

  CALL set_Qmodel_GGdef(GGdef,ndim)

where

  • ndim is the number of degree(s) of freedom it MUST be indentical to the initialized value (with sub_Init_Qmodel)
  • $GGdef(:,:)$ is the new metric tensor a ndim x ndim matrix of real (kind=8)

4) Examples and Tests

With "make all", the libraries are created and several main programs.

4a) To test the implementation

From the main QuantumModelLib directory:

    make ut

From the Tests directory

    ./run_test_QML

=> Some options are possible, the compiler, OPT, OMP, Lapack

Or you can run:

    ./run_tests

=> All possible combinations between OPT=0/1, OMP=0/1, Lapack=0/1 will be tested. Beware, this test is long.

4b) To run examples

From the main QuantumModelLib directory:

  ./TEST_driver.x < Tests/DAT_files/Vibadia_HBond.dat > res_driver

=> Test sevral models (1 or several surfaces, optimization, Vibration adiabatic separation)

  ./TEST_VibAdia.x < Tests/DAT_files/Vibadia_HBond.dat > res_VibAdia

=> Test a Vibration adiabatic separation model.

  ./TEST_grid.x > res_grid

=> Test the 1D and 2D-cut generation for HenonHeiles potential (it uses subroutines with Fortran modules)

  ./TEST_OMPloop.x > res_loop

=> Test an OpenMP loop ($10^6$) on the HONO model (several seconds)

5) Installation + examples with fpm

  • You have to edit the fpm.toml and change the QML_path (path of QML directory)

  • If you want to remove OpenMP feature,

  • build:

fpm build

Remark: if you get this error "'./././/Ext_lib/QDUtilLib/fpm.toml' could not be found" Its means that the link between some dependencies are lost. Do:

  make fpmlink
  • tests:
  fpm test --> res

The intermediate result files (.txt grid) are in the RES_files directory (link to Tests/RES_files). The tests summaries are in QModel.log file (about 43 tests are performed)

Remark: if you get this error "STOP ERROR in Test_QdnV_FOR_Model: Impossible to open the file" Its means that the link between RES_files and/or DAT_files are lost. Do:

  make fpmlink
  • run examples:
 fpm run driver --< Tests/DAT_files/Vibadia_HBond.dat --> res_driver

=> Test sevral models (1 or several surfaces, optimization, Vibration adiabatic separation)

 fpm run vibadia --< Tests/DAT_files/Vibadia_HBond.dat --> res_VibAdia

=> Test a Vibration adiabatic separation model.

  fpm run grid

=> Test the 1D and 2D-cut generation for HenonHeiles potential (it uses subroutines with Fortran modules)

fpm run omp

=> Test an OpenMP loop ($10^6$) on the HONO model (several seconds)

Model list

Model 'buck'

   Buckingham potential: V(R) = A*exp(-B*R)-C/R^6
   pot_name  = 'buck'
   ndim      = 1
   nsurf     = 1
   reduced mass      = 36423.484024390622 au
   remark: default parameters for Ar2
   ref:  R.A. Buckingham, Proc. R. Soc. A Math. Phys. Eng. Sci. 168 (1938) 264–283. doi:10.1098/rspa.1938.0173

Model 'HBond'

   LinearHBond potential: Morse1(QQ/2+q,param1)+Morse2(QQ/2-q,param2)+Eref2+Buckingham(QQ)
   pot_name  = 'HBond'
   ndim      = 2   (QQ,q)
   nsurf     = 1
   reduced masses      = (/ 29156.946380706224, 1837.1526464003414 /) au
   remark:
      A--------------H-----X--------------------B
       <--------------QQ----------------------->
                      <-q->
   ref: Dana Codruta Marinica, Marie-Pierre Gaigeot, Daniel Borgis,
      Chemical Physics Letters 423 (2006) 390–394
      DOI: 10.1016/j.cplett.2006.04.007
   ref:  Eq 3.79 of J. Beutier, thesis.
  
   remark: when option=2 is selected, a contribution is added along QQ:
      Dm.exp(-betam.(QQ-QQm)) + Dp.exp(+betap.(QQ-QQp))

Model 'TwoD_Valahu2022'

   2D model
   pot_name  = 'TwoD_Valahu2022'
   ndim      = 2 (X,Y)
   nsurf     = 2
   ref:  xxxxx

Model 'PSB3'

   Model for the photo-isomerization of the penta-2,4-dieniminium (PSB3) cation.
   pot_name  = 'PSB3'
   ndim      = 3
   nsurf     = 2
   remarks: two options are possible (option = 1,2)
   The default is option=1 (ref2).
   The parameters for option=2 come from the following reference.
   ref1: E. Marsili, M. H. Farag, X. Yang, L. De Vico, and M. Olivucci, JPCA, 123, 1710–1719 (2019).
           https://doi.org/10.1021/acs.jpca.8b10010
   ref2: 1 E. Marsili, M. Olivucci, D. Lauvergnat, and F. Agostini, JCTC 16, 6032 (2020).
          https://pubs.acs.org/doi/10.1021/acs.jctc.0c00679

Model 'Retinal_JPCB2000'

   Model for the photo-isomerization of retinal.
   pot_name  = 'Retinal_JPCB2000'
   ndim      = 2 or up to 2+23
   nsurf     = 2
   ref:  S. Hahn, G. Stock / Chemical Physics 259 (2000) 297-312.
                doi: 10.1016/S0301-0104(00)00201-9

Model 'Uracil'

   Model for the photo-dissociation of the uracil cation.
   pot_name  = 'Uracil'
   ndim      = 36
   nsurf     = 4
   ref1: Mariana Assmann, Horst Köppel, and Spiridoula Matsika,
         J. Phys. Chem. A 2015, 119, 866−875, 
         DOI: 10.1021/jp512221x
   ref2: Patricia Vindel Zandbergen, Spiridoula Matsika, and Neepa T. Maitra
         J. Phys. Chem. Lett. 2022, 13, 7, 1785–1790
         https://doi.org/10.1021/acs.jpclett.1c04132

Model 'HONO'

   Model for the HONO.
   pot_name  = 'HONO'
   ndim      = 6
   nsurf     = 1
   ref1:  F. Richter, M. Hochlaf, P. Rosmus, F. Gatti, and H.-D. Meyer,
          J. Chem. Phys. 120, 1306 (2004).
         doi: 10.1063/1.1632471
   ref2: F. Richter, F. Gatti, C. Léonard, F. Le Quéré, and H.-D. Meyer,
         J. Chem. Phys. 127, 164315 (2007)
         doi: 10.1063/1.2784553

Model 'CH5'

   H + CH4 -> H-H + CH3 potential
      Quadratic potential along the reaction path'
      Reaction coordinate: R- = 1/2(RCH - RHH)'
      Optimal coordinates along the path at CCSD(T)-F12/cc-pVTZ-F12'
      V0 along the path at CCSD(T)-F12/cc-pVTZ-F12'
      Hessian along the path at MP2/cc-pVDZ'
   pot_name  = 'CH5'
   ndim      = 12 or 1
   nsurf     = 1
   option = 4 (default) or 5

Model 'PH4'

   H + PH3 -> H-H + PH2 potential
      Quadratic potential along the reaction path'
      Reaction coordinate: R- = 1/2(RPH - RHH)'
      Optimal coordinates along the path at MP2/cc-pVTZ'
      V0 along the path at CCSD(T)-F12/cc-pVTZ-F12 (option 4) or ...'
        ... MP2/cc-pVTZ'
      Hessian and gradient along the path at MP2/cc-pVTZ'
   pot_name  = 'PH4'
   ndim      = 9 or 1
   nsurf     = 1
   option = 4 (default)

Model 'HOO_DMBE'

   HOO potential: DMBE IV of Varandas group
   pot_name  = 'HOO_DMBE'
   ndim      = 3   (R1=dOO,R2=dHO1,R3=dHO2)
   nsurf     = 1
   ref:    M. R. Pastrana, L. A. M. Quintales, J. Brandão and A. J. C. Varandas'
           JCP, 1990, 94, 8073-8080, doi: 10.1021/j100384a019.

Model 'H3'

   H3 potential:
   pot_name  = 'H3'
   option    = 0,1,10,11 (LSTH)
   ndim      = 3   (the 3 H-H distances)
   nsurf     = 1
   Units: Energy in Hartree and distances in bohr.
   refs (option=0):
   P. Siegbahn, B. Liu,  J. Chem. Phys. 68, 2457(1978).
   D.G. Truhlar and C.J. Horowitz, J. Chem. Phys. 68, 2466 (1978); https://doi.org/10.1063/1.436019
   options  0 and 10 : 3D model with IRC functions (1 potential + parameters)
   options  0 and  1 : first IRC funtions fitted in polar representation (alpha)
   options 10 and 11 : second IRC funtions fitted with the sum and the difference (alpha)

Model 'CNH_Murrell'

   CNH or HCN potential:
   pot_name  = 'CNH_Murrell'
   option    = 0 (3D-3distances, default), 1,11 (3D-Jacobi), 2,21 (1D-Jacobi MEP)
   ndim      = 3
   nsurf     = 1
   remarks: 
     - Atomic order: C, N, H
     - Cart_TO_Q is possible
     - The options 11 and 21, the third coordinate is cos(theta)
   ref: J. N. Murrell, S. Carter and L. O. Halonene, J. Mol. Spectrosc. vo93 p307 1982
    doi: https://doi.org/10.1016/0022-2852(82)90170-9

Model '2d_mb'

   2D Müller-Brown potential:
   pot_name  = '2d_mb'
   ndim      = 2   (x,y)
   nsurf     = 1
   reduced masses      = [1000.,1000.]
  
   ref:   Klaus Müller and Leo D. Brown, ...
          ... Theoret. Chim. Acta (Berl.) 53, 75-93 (1979)
          https://doi.org/10.1007/BF00547608.
  
   remark: the option enables one to select among three minima and two TS.
           default (option=1), the first minimum (A in the reference)

Model 'H2O'

   H2O potential:
   pot_name  = 'H2O'
   option    = 1(default 1)
   ndim      = 3
   nsurf     = 1
   refs: Quadratic model potential for H2O; TIPS force constants taken from:  
         Dang and Pettitt, J. Chem. Phys. 91 (1987)

Model 'Bottleneck'

  Bottleneck potential: 1D Eckart Barrier + quadratic contributions'
   pot_name  = 'Bottleneck' or 'Eckart'
   option    = 1, 2 (default 2)
   ndim      >= 1
   nsurf     = 1
  
   ref (option 1): Trahan, Wyatt and Poirier, J Chem Phys 122, 164104 (2005)'
     Multidimensional quantum trajectories: Applications of the derivative propagation method.'
   ref (option 2): Dupuy, Lauvergnat and Scribano, CPL 787, 139241 (2022)'
     Smolyak representations with absorbing boundary conditions ...'
         for reaction path Hamiltonian model of reactive scattering.'
     DOI: 10.1016/j.cplett.2021.139241'

Model 'ClH2+'

   ClH2+ potential:
   pot_name  = 'ClH2+'
   option    = 1 to 6 (default 6)
   ndim      = 3
   nsurf     = 1
   remark, 6 options are possible:
      options = 1,3,5: the coordinates are [angle, R+, R-] (in bohr and radian)
      options = 2,4,6: the coordinates are [R1, R2, angle] (in bohr and radian)
  
      options = 1,2: B3LYP/cc-pVTZ 1st version (do not use)
      options = 3,4: B3LYP/cc-pVTZ 2d  version
      options = 5,6: CCSD(T)-F12b/cc-pVTZ-F12
   refs: unpublished

Model 'ClH2+_Botschwina'

   ClH2+ potential:
   pot_name  = 'ClH2+_Botschwina'
   option    = 1,2 (default 1)
   ndim      = 3
   nsurf     = 1
   remark, 2 options are possible:
      options = 1: CEPA-1
      options = 2: CEPA-1 corrected
   ref: Peter Botschwina, J. Chem. Soc., Faraday Trans. 2, 1988, 84(9), 1263-1276'
        DOI: 10.1039/F29888401263

Model 'H2'

H2 potential pot_name = 'H2' ndim = 1 nsurf = 1

options, (1) Talyor expansion: $V(R) = \sum_i a_i \cdot (R-Req)^{i-1}$ Level: CCSD(T)-F12B/VTZ-F12 (with molpro 2010) options, (2) Talyor expansion: $V(R) = \sum_i a_i \cdot x^{i-1}$ with $x=Req/R-1$ Level: CCSD(T)-F12B/VTZ-F12 (with molpro 2010) options(3) extract for the H+H2 LSTH potential

reduced mass = 1837.1526464003414/2 au

Model 'Morse'

Morse potential: $V(R) = D(1-exp(-a \cdot(R-Req))^2$ pot_name = 'Morse' ndim = 1 nsurf = 1 reduced mass = 1744.60504565084306291455 au remark: Default parameters for H-F

Model 'Poly1D'

Polynomial potential: $V(R) = \sum_i coef(i) \cdot (r-Req)^i$ pot_name = 'Poly1D' ndim = 1 nsurf = 1 reduced mass = 1744.60504565084306291455 au remark: Default parameters for H-F

Model

Model 'HenonHeiles'

   HenonHeiles potential
   pot_name  = 'HenonHeiles'
   ndim      > 1
   nsurf     = 1
   remark: three options are possible (option = 1,2,3)
      option 1: usual HenonHeiles (default)
      option 2: quadratic contribution + morse potentials and tanh contributions
      option 3: quadratic contribution + tanh contributions for the anharmonic part
   reduced masses      = ONE au
   ref:  parameters taken from M. Nest, H.-D. Meyer, J. Chem. Phys. 117 (2002) 10499. doi:10.1063/1.1521129

Model 'Tully'

   Tully potential: three options
   pot_name  = 'Tully'
   ndim      = 1
   nsurf     = 2
   reduced mass      = 2000. au
   remark: three options are possible (option = 1,2,3)
   ref:  Tully, J. Chem. Phys. V93, pp15, 1990

Model '1DSOC_1S1T'

   Spin Orbit coupling model
   pot_name  = '1DSOC_1S1T'
   ndim      = 1
   nsurf     = 4 or 2
   reduced mass      = 20000. au
   remarks: 1 singlet and 3 triplet components                           => nsurf     = 4
    or      1 singlet and 1 linear combibation of the triplet components => nsurf     = 2
   ref: Giovanni Granucci, Maurizio Persico, and Gloria Spighi, J. Chem. Phys. V137, p22A501 (2012)

Model '1DSOC_2S1T'

   Spin Orbit coupling model
   pot_name  = '1DSOC_2S1T'
   ndim      = 1
   nsurf     = 4
   reduced mass      = 20000. au
   remark: 2 singlets and 1 triplet (2 linear combinations of the triplet components are not included) => nsurf     = 4
   ref: Giovanni Granucci, Maurizio Persico, and Gloria Spighi, J. Chem. Phys. V137, p22A501 (2012)

Model 'Phenol'

   Phenol model
   pot_name  = 'Phenol'
   ndim      = 2 (R=rOH, th=OH-torsion)
   nsurf     = 3
   Diagonal Metric Tensor      = [ 0.0005786177, 0.0002550307 ] au
   remark:
   ref: Z. Lan, W. Domcke, V. Vallet, A.L. Sobolewski, S. Mahapatra, J. Chem. Phys. 122 (2005) 224315. doi:10.1063/1.1906218.

Model 'TwoD'

   2D model
   pot_name  = 'TwoD'
   ndim      = 2 (X,Y)
   nsurf     = 2
   Reduced masses$      = [ 20000., 6667. ] au
   remark: The parameter values have been modified
   ref: A. Ferretti, G. Granucci, A. Lami, M. Persico, G. Villani, J. Chem. Phys. 104, 5517 (1996); https://doi.org/10.1063/1.471791

Model 'TwoD_RJDI2014'

   2D model
   pot_name  = 'TwoD_RJDI2014'
   ndim      = 2 (X,Y)
   nsurf     = 2
   Reduced masses      = [1. , 1.] au
   ref:  Ilya G. Ryabinkin, Loïc Joubert-Doriol, and Artur F. Izmaylov, ...
         ... J. Chem. Phys. 140, 214116 (2014); https://doi.org/10.1063/1.4881147

About

This module enables to use potentials extracted from the literature. It has the following features: * One or several degrees of freedom * One or several electronic states * For each electronic state, the energy, gradient and hessian can be obtained in the diabatic or adiabatic representations

Topics

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages