-
Notifications
You must be signed in to change notification settings - Fork 27
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
18 changed files
with
1,163 additions
and
324 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,329 @@ | ||
# Copyright (C) 2023 Intel Corporation | ||
# SPDX-License-Identifier: BSD-3-Clause | ||
# See: https://spdx.org/licenses/ | ||
|
||
|
||
from typing import Optional, Union | ||
import numpy as np | ||
import networkx as ntx | ||
|
||
import matplotlib.pyplot as plt | ||
from matplotlib.patches import PathPatch | ||
from matplotlib.path import Path | ||
|
||
|
||
class SchedulingProblem: | ||
def __init__(self, | ||
num_agents: int = 3, | ||
num_tasks: int = 3, | ||
sat_cutoff: Union[float, int] = 0.99, | ||
seed: int = 42): | ||
"""Schedule `num_tasks` tasks among `num_agents` agents such that | ||
every agent performs exactly one task and every task gets assigned | ||
to exactly one agent. | ||
Parameters | ||
---------- | ||
num_agents (int) : number of agents available to perform all tasks. | ||
Default is arbitrarily chosen as 3. | ||
num_tasks (int) : number of tasks to be performed. Default is | ||
arbitrarily chosen as 3. | ||
sat_cutoff (float or int) : If provided as a float, it is interpreted | ||
as satisfiability cut-off, which is the ratio between the number | ||
of tasks for which an agent gets assigned to the total number of | ||
tasks. Needs to be a fraction between 0 and 1 in this case. | ||
If provided as an int, this is the target cost for the underlying QUBO | ||
solver. Default is 0.99 (i.e., 99% of the total number of tasks get | ||
assigned an agent). | ||
seed (int) : Seed for PRNG used in problem generation. | ||
""" | ||
self._num_agents = num_agents | ||
self._agent_ids = range(num_agents) | ||
self._agent_attrs = None | ||
self._num_tasks = num_tasks | ||
self._task_ids = range(num_tasks) | ||
self._task_attrs = None | ||
self._sat_cutoff = sat_cutoff | ||
self.graph = None | ||
self.adjacency = None | ||
self._random_seed = seed | ||
|
||
@property | ||
def num_agents(self): | ||
return self._num_agents | ||
|
||
@num_agents.setter | ||
def num_agents(self, val: int): | ||
self._num_agents = val | ||
|
||
@property | ||
def agent_ids(self): | ||
return self._agent_ids | ||
|
||
@property | ||
def agent_attrs(self): | ||
return self._agent_attrs | ||
|
||
@agent_attrs.setter | ||
def agent_attrs(self, attr_vec): | ||
self._agent_attrs = attr_vec | ||
|
||
@property | ||
def num_tasks(self): | ||
return self._num_tasks | ||
|
||
@num_tasks.setter | ||
def num_tasks(self, val: int): | ||
self._num_tasks = val | ||
|
||
@property | ||
def task_ids(self): | ||
return self._task_ids | ||
|
||
@property | ||
def task_attrs(self): | ||
return self._task_attrs | ||
|
||
@task_attrs.setter | ||
def task_attrs(self, attr_vec): | ||
self._task_attrs = attr_vec | ||
|
||
@property | ||
def sat_cutoff(self): | ||
return self._sat_cutoff | ||
|
||
@sat_cutoff.setter | ||
def sat_cutoff(self, val: float): | ||
self._sat_cutoff = val | ||
|
||
@property | ||
def random_seed(self): | ||
return self._random_seed | ||
|
||
@random_seed.setter | ||
def random_seed(self, val: int): | ||
self._random_seed = val | ||
|
||
def is_node_valid(self, *args): | ||
"""Checks if a node is valid to be included in the problem graph. | ||
Over-ridden by derived child classes to suit their purpose. The base | ||
class method always returns True, indicating that all nodes are valid | ||
in the case of a base Scheduling Problem. | ||
""" | ||
return True | ||
|
||
def is_edge_conflicting(self, node1, node2): | ||
nodes = self.graph.nodes | ||
is_same_agent = (nodes[node1]["agent_id"] == nodes[node2]["agent_id"]) | ||
is_same_task = (nodes[node1]["task_id"] == nodes[node2]["task_id"]) | ||
return True if is_same_agent or is_same_task else False | ||
|
||
def generate(self, seed=None): | ||
""" Generate a new scheduler problem. """ | ||
if self.random_seed: | ||
np.random.seed(self.random_seed) | ||
if not self.random_seed or seed != self.random_seed: | ||
# set seed only if it's different | ||
self.random_seed = seed | ||
np.random.seed(seed) | ||
self.graph = ntx.Graph() | ||
self._generate_valid_nodes() | ||
self._generate_edges_from_constraints() | ||
self._rescale_adjacency() | ||
|
||
def _generate_valid_nodes(self): | ||
"""Generate nodes and check if they are valid before adding them to | ||
the problem graph. | ||
""" | ||
node_id = 0 | ||
if self.agent_attrs is None: | ||
self.agent_attrs = np.reshape(self.agent_ids, | ||
(len(self.agent_ids), 1)) | ||
agent_id_attr_map = dict(zip(self.agent_ids, self.agent_attrs)) | ||
if self.task_attrs is None: | ||
self.task_attrs = ( | ||
np.tile(np.reshape(self.task_ids, | ||
(len(self.task_ids), 1)), (1, 2))) | ||
task_id_attr_map = dict(zip(self.task_ids, self.task_attrs)) | ||
for aid, a_attr in agent_id_attr_map.items(): # for all agents | ||
for tid, t_attr in task_id_attr_map.items(): # for all tasks | ||
# Check if (agent, task) is a valid node | ||
if self.is_node_valid(aid, tid): | ||
# If it is, add it to the problem graph | ||
self.graph.add_node(node_id, | ||
agent_id=aid, | ||
task_id=tid, | ||
agent_attr=a_attr, | ||
task_attr=t_attr) | ||
node_id += 1 | ||
|
||
def _generate_edges_from_constraints(self): | ||
num_nodes = len(self.graph.nodes) | ||
self.adjacency = ( | ||
np.zeros((num_nodes, num_nodes), dtype=int)) | ||
for n1 in self.graph.nodes: | ||
for n2 in self.graph.nodes: | ||
not_same = n1 != n2 | ||
is_conflict = self.is_edge_conflicting(n1, n2) | ||
if not_same and is_conflict: | ||
self.graph.add_edge(n1, n2) | ||
self.adjacency[n1, n2] = 1 | ||
|
||
def _rescale_adjacency(self): | ||
""" Scale the adjacency matrix weights for QUBO solver. """ | ||
self.adjacency = np.triu(self.adjacency) | ||
self.adjacency += self.adjacency.T - 2 * np.diag( | ||
self.adjacency.diagonal()) | ||
|
||
|
||
class SatelliteScheduleProblem(SchedulingProblem): | ||
""" | ||
SatelliteScheduleProblem is a synthetic scheduling problem in which a | ||
number of vehicles must be assigned to view as many requests in a | ||
2-dimensional plane as possible. Each vehicle moves horizontally across | ||
the plane, has minimum and maximum view angle, and has a maximum rotation | ||
rate (i.e. the rate at which the vehicle can reorient vertically from one | ||
target to the next). | ||
The problem is represented as an infeasibility graph and can be solved by | ||
finding the Maximum Independent Set. | ||
Parameters | ||
---------- | ||
num_satellites : int, default = 6 | ||
The number of satellites to generate schedules for. | ||
view_height : float, default = 0.25 | ||
The range from minimum to maximum viewable angle for each satellite. | ||
view_coords : Optional[np.ndarray], default = None | ||
The view coordinates (i.e. minimum viewable angle) for each | ||
satellite in a numpy array. If None, view coordinates will be | ||
evenly distributed across the viewable range. | ||
num_requests : int, default = 48 | ||
The number of requests to generate. | ||
turn_rate : float, default = 2 | ||
How quickly each satellite may reorient its view angle. | ||
solution_criteria : float, default = 0.99 | ||
The target for a successful solution. The solver will stop | ||
looking for a better schedule if the specified fraction of | ||
requests is satisfied. | ||
""" | ||
|
||
def __init__( | ||
self, | ||
num_satellites: int = 6, | ||
view_height: float = 0.25, | ||
view_coords: Optional[np.ndarray] = None, | ||
num_requests: int = 48, | ||
requests: Optional[np.ndarray] = None, | ||
turn_rate: float = 2, | ||
solution_criteria: float = 0.99, | ||
seed: int = 42, | ||
): | ||
""" Create a SatelliteScheduleProblem. | ||
""" | ||
super(SatelliteScheduleProblem, | ||
self).__init__(num_agents=num_satellites, | ||
num_tasks=num_requests, | ||
sat_cutoff=solution_criteria, | ||
seed=seed) | ||
self.num_satellites = self.num_agents | ||
self.num_requests = self.num_tasks | ||
|
||
self.view_height = view_height * (1 / (num_satellites - 1)) | ||
if view_coords is None: | ||
self.view_coords = np.linspace(0, | ||
1, | ||
num_satellites) | ||
else: | ||
self.view_coords = view_coords | ||
self.agent_attrs = list(zip([self.view_height] * num_satellites, | ||
self.view_coords)) | ||
self.satellites = self.agent_ids | ||
self.turn_rate = turn_rate | ||
self.requests = None | ||
self.qubo_problem = None | ||
self.generate_requests(requests) | ||
self.request_density = self.requests.shape[0] / (1 + self.view_height) | ||
|
||
def generate_requests(self, requests=None) -> None: | ||
""" Generate a random set of requests in the 2D plane. """ | ||
if requests is not None: | ||
self.requests = requests | ||
else: | ||
np.random.seed(self.random_seed) | ||
self.requests = np.random.random((self.num_requests, 2)) | ||
self.requests[:, 1] = (1 + self.view_height) * ( | ||
self.requests[:, 1]) - (self.view_height / 2) | ||
order = np.argsort(self.requests[:, 0]) | ||
self.requests = self.requests[order, :] | ||
self.task_attrs = self.requests.tolist() | ||
|
||
def is_node_valid(self, sat_id, req_id): | ||
""" Return whether the request is visible to the satellite. """ | ||
view_height = self.agent_attrs[sat_id][0] | ||
satellite_y_coord = self.agent_attrs[sat_id][1] | ||
request_y_coord = self.task_attrs[req_id][1] | ||
lower_bound = satellite_y_coord - view_height / 2 | ||
upper_bound = satellite_y_coord + view_height / 2 | ||
return lower_bound <= request_y_coord <= upper_bound | ||
|
||
def is_req_reachable(self, n1, n2): | ||
nodes = self.graph.nodes | ||
n1_req_coords = nodes[n1]["task_attr"] | ||
n2_req_coords = nodes[n2]["task_attr"] | ||
delta_x = abs(n1_req_coords[0] - n2_req_coords[0]) | ||
delta_y = abs(n1_req_coords[1] - n2_req_coords[1]) | ||
return self.turn_rate * delta_x >= delta_y | ||
|
||
def is_edge_conflicting(self, node1, node2): | ||
nodes = self.graph.nodes | ||
is_same_satellite = (nodes[node1]["agent_id"] == nodes[node2][ | ||
"agent_id"]) | ||
is_same_request = (nodes[node1]["task_id"] == nodes[node2]["task_id"]) | ||
return is_same_request or (is_same_satellite and not | ||
self.is_req_reachable(node1, node2)) | ||
|
||
def plot_problem(self): | ||
""" Plot the problem state using pyplot. """ | ||
plt.figure(figsize=(12, 4), dpi=120) | ||
plt.subplot(131) | ||
plt.scatter(self.requests[:, 0], | ||
self.requests[:, 1], | ||
s=2) | ||
for y in self.view_coords: | ||
codes = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY] | ||
verts = [[-0.05, y], | ||
[0.05, y + self.view_height / 2], | ||
[0.05, y - self.view_height / 2], | ||
[-0.05, y]] | ||
plt.gca().add_patch( | ||
PathPatch(Path(verts, codes), ec='none', alpha=0.3, | ||
fc='lightblue')) | ||
plt.scatter([-0.05], [y], # + self.view_height / 2 | ||
s=10, marker='s', c='gray') | ||
plt.plot([0, 1], | ||
[y, # + self.view_height / 2 | ||
y], # + self.view_height / 2], | ||
'C1--', lw=0.75) | ||
plt.xticks([]) | ||
plt.yticks([]) | ||
plt.title( | ||
f'Schedule {self.num_satellites} satellites to observe ' | ||
f'{self.num_requests} targets.') | ||
plt.subplot(132) | ||
ntx.draw_networkx(self.graph, with_labels=False, | ||
node_size=2, width=0.5) | ||
plt.title( | ||
f'Infeasibility graph with {self.graph.number_of_nodes()} nodes.') | ||
plt.subplot(133) | ||
plt.imshow(self.adjacency, aspect='auto') | ||
plt.title( | ||
f'Adjacency matrix has {self.adjacency.mean():.2%} ' | ||
f'connectivity.') | ||
plt.yticks([]) | ||
plt.tight_layout() | ||
plt.show() |
Oops, something went wrong.