Skip to content

Commit

Permalink
Merge branch 'main' into multichip
Browse files Browse the repository at this point in the history
  • Loading branch information
AlessandroPierro authored Oct 19, 2023
2 parents 5660299 + 0190199 commit 04a6749
Show file tree
Hide file tree
Showing 18 changed files with 1,163 additions and 324 deletions.
423 changes: 143 additions & 280 deletions poetry.lock

Large diffs are not rendered by default.

5 changes: 3 additions & 2 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,8 @@ packages = [
{include = "tests"}
]
include = ["tutorials"]
version = "0.3.0"
version = "0.3.0.dev0"
readme = "README.md"
description = "A library of solvers that leverage neuromorphic hardware for constrained optimization. Lava-Optimization is part of Lava Framework. Lava-optimization is part of Lava Framework"
homepage = "https://lava-nc.org/"
repository = "https://github.com/lava-nc/lava-optimization"
Expand Down Expand Up @@ -48,7 +49,7 @@ classifiers = [
[tool.poetry.dependencies]
python = ">=3.8, <3.11"

lava-nc = "0.8.0"
lava-nc = { git = "https://github.com/lava-nc/lava.git", branch = "main", develop = true }

numpy = "^1.24.4"
networkx = "<=2.8"
Expand Down
329 changes: 329 additions & 0 deletions src/lava/lib/optimization/apps/scheduler/problems.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,329 @@
# Copyright (C) 2023 Intel Corporation
# SPDX-License-Identifier: BSD-3-Clause
# See: https://spdx.org/licenses/


from typing import Optional, Union
import numpy as np
import networkx as ntx

import matplotlib.pyplot as plt
from matplotlib.patches import PathPatch
from matplotlib.path import Path


class SchedulingProblem:
def __init__(self,
num_agents: int = 3,
num_tasks: int = 3,
sat_cutoff: Union[float, int] = 0.99,
seed: int = 42):
"""Schedule `num_tasks` tasks among `num_agents` agents such that
every agent performs exactly one task and every task gets assigned
to exactly one agent.
Parameters
----------
num_agents (int) : number of agents available to perform all tasks.
Default is arbitrarily chosen as 3.
num_tasks (int) : number of tasks to be performed. Default is
arbitrarily chosen as 3.
sat_cutoff (float or int) : If provided as a float, it is interpreted
as satisfiability cut-off, which is the ratio between the number
of tasks for which an agent gets assigned to the total number of
tasks. Needs to be a fraction between 0 and 1 in this case.
If provided as an int, this is the target cost for the underlying QUBO
solver. Default is 0.99 (i.e., 99% of the total number of tasks get
assigned an agent).
seed (int) : Seed for PRNG used in problem generation.
"""
self._num_agents = num_agents
self._agent_ids = range(num_agents)
self._agent_attrs = None
self._num_tasks = num_tasks
self._task_ids = range(num_tasks)
self._task_attrs = None
self._sat_cutoff = sat_cutoff
self.graph = None
self.adjacency = None
self._random_seed = seed

@property
def num_agents(self):
return self._num_agents

@num_agents.setter
def num_agents(self, val: int):
self._num_agents = val

@property
def agent_ids(self):
return self._agent_ids

@property
def agent_attrs(self):
return self._agent_attrs

@agent_attrs.setter
def agent_attrs(self, attr_vec):
self._agent_attrs = attr_vec

@property
def num_tasks(self):
return self._num_tasks

@num_tasks.setter
def num_tasks(self, val: int):
self._num_tasks = val

@property
def task_ids(self):
return self._task_ids

@property
def task_attrs(self):
return self._task_attrs

@task_attrs.setter
def task_attrs(self, attr_vec):
self._task_attrs = attr_vec

@property
def sat_cutoff(self):
return self._sat_cutoff

@sat_cutoff.setter
def sat_cutoff(self, val: float):
self._sat_cutoff = val

@property
def random_seed(self):
return self._random_seed

@random_seed.setter
def random_seed(self, val: int):
self._random_seed = val

def is_node_valid(self, *args):
"""Checks if a node is valid to be included in the problem graph.
Over-ridden by derived child classes to suit their purpose. The base
class method always returns True, indicating that all nodes are valid
in the case of a base Scheduling Problem.
"""
return True

def is_edge_conflicting(self, node1, node2):
nodes = self.graph.nodes
is_same_agent = (nodes[node1]["agent_id"] == nodes[node2]["agent_id"])
is_same_task = (nodes[node1]["task_id"] == nodes[node2]["task_id"])
return True if is_same_agent or is_same_task else False

def generate(self, seed=None):
""" Generate a new scheduler problem. """
if self.random_seed:
np.random.seed(self.random_seed)
if not self.random_seed or seed != self.random_seed:
# set seed only if it's different
self.random_seed = seed
np.random.seed(seed)
self.graph = ntx.Graph()
self._generate_valid_nodes()
self._generate_edges_from_constraints()
self._rescale_adjacency()

def _generate_valid_nodes(self):
"""Generate nodes and check if they are valid before adding them to
the problem graph.
"""
node_id = 0
if self.agent_attrs is None:
self.agent_attrs = np.reshape(self.agent_ids,
(len(self.agent_ids), 1))
agent_id_attr_map = dict(zip(self.agent_ids, self.agent_attrs))
if self.task_attrs is None:
self.task_attrs = (
np.tile(np.reshape(self.task_ids,
(len(self.task_ids), 1)), (1, 2)))
task_id_attr_map = dict(zip(self.task_ids, self.task_attrs))
for aid, a_attr in agent_id_attr_map.items(): # for all agents
for tid, t_attr in task_id_attr_map.items(): # for all tasks
# Check if (agent, task) is a valid node
if self.is_node_valid(aid, tid):
# If it is, add it to the problem graph
self.graph.add_node(node_id,
agent_id=aid,
task_id=tid,
agent_attr=a_attr,
task_attr=t_attr)
node_id += 1

def _generate_edges_from_constraints(self):
num_nodes = len(self.graph.nodes)
self.adjacency = (
np.zeros((num_nodes, num_nodes), dtype=int))
for n1 in self.graph.nodes:
for n2 in self.graph.nodes:
not_same = n1 != n2
is_conflict = self.is_edge_conflicting(n1, n2)
if not_same and is_conflict:
self.graph.add_edge(n1, n2)
self.adjacency[n1, n2] = 1

def _rescale_adjacency(self):
""" Scale the adjacency matrix weights for QUBO solver. """
self.adjacency = np.triu(self.adjacency)
self.adjacency += self.adjacency.T - 2 * np.diag(
self.adjacency.diagonal())


class SatelliteScheduleProblem(SchedulingProblem):
"""
SatelliteScheduleProblem is a synthetic scheduling problem in which a
number of vehicles must be assigned to view as many requests in a
2-dimensional plane as possible. Each vehicle moves horizontally across
the plane, has minimum and maximum view angle, and has a maximum rotation
rate (i.e. the rate at which the vehicle can reorient vertically from one
target to the next).
The problem is represented as an infeasibility graph and can be solved by
finding the Maximum Independent Set.
Parameters
----------
num_satellites : int, default = 6
The number of satellites to generate schedules for.
view_height : float, default = 0.25
The range from minimum to maximum viewable angle for each satellite.
view_coords : Optional[np.ndarray], default = None
The view coordinates (i.e. minimum viewable angle) for each
satellite in a numpy array. If None, view coordinates will be
evenly distributed across the viewable range.
num_requests : int, default = 48
The number of requests to generate.
turn_rate : float, default = 2
How quickly each satellite may reorient its view angle.
solution_criteria : float, default = 0.99
The target for a successful solution. The solver will stop
looking for a better schedule if the specified fraction of
requests is satisfied.
"""

def __init__(
self,
num_satellites: int = 6,
view_height: float = 0.25,
view_coords: Optional[np.ndarray] = None,
num_requests: int = 48,
requests: Optional[np.ndarray] = None,
turn_rate: float = 2,
solution_criteria: float = 0.99,
seed: int = 42,
):
""" Create a SatelliteScheduleProblem.
"""
super(SatelliteScheduleProblem,
self).__init__(num_agents=num_satellites,
num_tasks=num_requests,
sat_cutoff=solution_criteria,
seed=seed)
self.num_satellites = self.num_agents
self.num_requests = self.num_tasks

self.view_height = view_height * (1 / (num_satellites - 1))
if view_coords is None:
self.view_coords = np.linspace(0,
1,
num_satellites)
else:
self.view_coords = view_coords
self.agent_attrs = list(zip([self.view_height] * num_satellites,
self.view_coords))
self.satellites = self.agent_ids
self.turn_rate = turn_rate
self.requests = None
self.qubo_problem = None
self.generate_requests(requests)
self.request_density = self.requests.shape[0] / (1 + self.view_height)

def generate_requests(self, requests=None) -> None:
""" Generate a random set of requests in the 2D plane. """
if requests is not None:
self.requests = requests
else:
np.random.seed(self.random_seed)
self.requests = np.random.random((self.num_requests, 2))
self.requests[:, 1] = (1 + self.view_height) * (
self.requests[:, 1]) - (self.view_height / 2)
order = np.argsort(self.requests[:, 0])
self.requests = self.requests[order, :]
self.task_attrs = self.requests.tolist()

def is_node_valid(self, sat_id, req_id):
""" Return whether the request is visible to the satellite. """
view_height = self.agent_attrs[sat_id][0]
satellite_y_coord = self.agent_attrs[sat_id][1]
request_y_coord = self.task_attrs[req_id][1]
lower_bound = satellite_y_coord - view_height / 2
upper_bound = satellite_y_coord + view_height / 2
return lower_bound <= request_y_coord <= upper_bound

def is_req_reachable(self, n1, n2):
nodes = self.graph.nodes
n1_req_coords = nodes[n1]["task_attr"]
n2_req_coords = nodes[n2]["task_attr"]
delta_x = abs(n1_req_coords[0] - n2_req_coords[0])
delta_y = abs(n1_req_coords[1] - n2_req_coords[1])
return self.turn_rate * delta_x >= delta_y

def is_edge_conflicting(self, node1, node2):
nodes = self.graph.nodes
is_same_satellite = (nodes[node1]["agent_id"] == nodes[node2][
"agent_id"])
is_same_request = (nodes[node1]["task_id"] == nodes[node2]["task_id"])
return is_same_request or (is_same_satellite and not
self.is_req_reachable(node1, node2))

def plot_problem(self):
""" Plot the problem state using pyplot. """
plt.figure(figsize=(12, 4), dpi=120)
plt.subplot(131)
plt.scatter(self.requests[:, 0],
self.requests[:, 1],
s=2)
for y in self.view_coords:
codes = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.CLOSEPOLY]
verts = [[-0.05, y],
[0.05, y + self.view_height / 2],
[0.05, y - self.view_height / 2],
[-0.05, y]]
plt.gca().add_patch(
PathPatch(Path(verts, codes), ec='none', alpha=0.3,
fc='lightblue'))
plt.scatter([-0.05], [y], # + self.view_height / 2
s=10, marker='s', c='gray')
plt.plot([0, 1],
[y, # + self.view_height / 2
y], # + self.view_height / 2],
'C1--', lw=0.75)
plt.xticks([])
plt.yticks([])
plt.title(
f'Schedule {self.num_satellites} satellites to observe '
f'{self.num_requests} targets.')
plt.subplot(132)
ntx.draw_networkx(self.graph, with_labels=False,
node_size=2, width=0.5)
plt.title(
f'Infeasibility graph with {self.graph.number_of_nodes()} nodes.')
plt.subplot(133)
plt.imshow(self.adjacency, aspect='auto')
plt.title(
f'Adjacency matrix has {self.adjacency.mean():.2%} '
f'connectivity.')
plt.yticks([])
plt.tight_layout()
plt.show()
Loading

0 comments on commit 04a6749

Please sign in to comment.