Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Clustering and TSP apps #265

Merged
merged 75 commits into from
Nov 9, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
75 commits
Select commit Hold shift + click to select a range
645c890
Prelim commit
srrisbud Dec 9, 2022
ae13aa5
NEBM+SCIF merger: first pass
srrisbud Jan 9, 2023
cd6c3ba
Prelim commit
srrisbud Dec 9, 2022
bad70a1
NEBM+SCIF merger: second pass
srrisbud Jan 9, 2023
ce8d87d
Post code-review: removed `debug` from NEBM, added docstrings, reinst…
srrisbud Jan 31, 2023
69b53aa
First VRP app commit; incomplete, needs tests
srrisbud Feb 28, 2023
110c66c
Adding helper functions to generate Q matrices
ashishrao7 Mar 1, 2023
5458d71
Second VRP app commit; functional with VRPy. Includes tests.
srrisbud Mar 2, 2023
72b9c96
Second VRP app commit; solver complete, needs correct Q matrices
srrisbud Mar 9, 2023
989a005
Changes to clustering matrix complete.
ashishrao7 Mar 6, 2023
c8a68b1
New tsp matrix generator with tests
ashishrao7 Mar 6, 2023
fd7ee83
Changed formulation of distance in TSP.
ashishrao7 Mar 7, 2023
f74b1e0
Added proper clustering Q matrix generator
ashishrao7 Mar 8, 2023
20a39ac
VRP Solver: Almost there
srrisbud Mar 10, 2023
331171f
NEBM+SCIF merger: first pass
srrisbud Jan 9, 2023
5112bd8
Prelim commit
srrisbud Dec 9, 2022
ca2da0f
NEBM+SCIF merger: second pass
srrisbud Jan 9, 2023
6b7c840
Post code-review: removed `debug` from NEBM, added docstrings, reinst…
srrisbud Jan 31, 2023
b4c6268
Adding helper functions to generate Q matrices
ashishrao7 Mar 1, 2023
e81862b
Resolved conflicts
srrisbud Mar 18, 2023
9d05227
Prelim commit
srrisbud Dec 9, 2022
51b107d
NEBM+SCIF merger: first pass
srrisbud Jan 9, 2023
c5bcd3e
Prelim commit
srrisbud Dec 9, 2022
8169e43
NEBM+SCIF merger: second pass
srrisbud Jan 9, 2023
b927fa3
Post code-review: removed `debug` from NEBM, added docstrings, reinst…
srrisbud Jan 31, 2023
8208e97
Changes to clustering matrix complete.
ashishrao7 Mar 6, 2023
b72b7ce
New tsp matrix generator with tests
ashishrao7 Mar 6, 2023
9f358f3
Changed formulation of distance in TSP.
ashishrao7 Mar 7, 2023
3cb087c
VRPSolver first milestone: successfully solves VRPs
srrisbud Apr 6, 2023
ec7f72e
SCIF CPU backend model minor change to remove `state_hist` and pass t…
srrisbud Apr 6, 2023
8eabbc3
Delinting working VRPSolver
srrisbud Apr 6, 2023
20839e7
Commented out a piece of code dependent on a draft PR
srrisbud Apr 6, 2023
d7925ec
Remove lint and add VRPy to PyProject.TOML
srrisbud Apr 7, 2023
5309540
Sparsification attempt #1: DistProxy with sign inversion and max cut-off
srrisbud May 4, 2023
a4ebc9c
Merge branch 'main' into vrp_sparsification
srrisbud May 5, 2023
164b0a9
Intermediate check point commit for scenario sweep
srrisbud May 11, 2023
78df169
Profiling and sparsification related improvements to VRPSolver and VR…
srrisbud Jun 16, 2023
c57a653
Script to sweep various scenarios for performance modelling of VRPSolver
srrisbud Jun 16, 2023
cee82c0
Merge branch 'main' into vrpsolver
srrisbud Jun 16, 2023
89758be
Profiling and sparsification related improvements to VRPSolver and VR…
srrisbud Jun 16, 2023
dea31fb
Fixed the way to check if VRPy is installed
srrisbud Jun 16, 2023
513d6eb
Code clean-up refactoring in LCA module
srrisbud Jul 5, 2023
5ca5fc6
Merge branch 'lava-nc:main' into main
srrisbud Jul 19, 2023
91e5997
Merge branch 'main' into vrp_sparsification
srrisbud Jul 19, 2023
7cb6706
Merge branch 'lava-nc:main' into main
srrisbud Jul 24, 2023
767cd3b
Merge branch 'main' into vrp_sparsification
srrisbud Jul 24, 2023
8e1acf9
Merge branch 'lava-nc:main' into main
srrisbud Jul 31, 2023
e7ac28b
Merge branch 'main' into vrp_sparsification
srrisbud Jul 31, 2023
5ec5a46
Corrected TSP Q matrix name
srrisbud Jul 31, 2023
4e9f4aa
Added edge-pruning based sparsification
srrisbud Jul 31, 2023
f92a034
Tests and scripts for quantification of the effect of dist-mat sparsi…
srrisbud Jul 31, 2023
7e658e3
Sparsification attempt #1: DistProxy with sign inversion and max cut-off
srrisbud May 4, 2023
7c73e18
Merge branch 'vrp_sparsification' into vrpsolver
srrisbud Jul 31, 2023
7023d58
Delint VRP solver.py
srrisbud Aug 15, 2023
e77ff17
First commit of clustering and TSP. Clustering is almost complete.
srrisbud Aug 15, 2023
7533982
Merge branch 'lava-nc:main' into main
srrisbud Aug 15, 2023
d205049
Merge branch 'main' into refactor_clust_tsp
srrisbud Aug 15, 2023
cb26d07
Cleaner unittest for solver
srrisbud Aug 16, 2023
d5f9c15
Merge branch 'lava-nc:main' into main
srrisbud Aug 21, 2023
276a231
Merge branch 'lava-nc:main' into main
srrisbud Aug 30, 2023
cd4bcc5
Merge branch 'lava-nc:main' into main
srrisbud Sep 8, 2023
e0f6b26
Merge branch 'lava-nc:main' into main
srrisbud Sep 22, 2023
1d62a6a
Merge branch 'main' into refactor_clust_tsp
srrisbud Sep 27, 2023
9d01e45
Functioning Clustering and TSP apps
srrisbud Oct 11, 2023
246f64e
Delinting
srrisbud Oct 11, 2023
aba3bde
Removed VRP from this branch
srrisbud Oct 11, 2023
3b4b5e0
Merge branch 'lava-nc:main' into main
srrisbud Oct 11, 2023
918a8a5
Merge branch 'main' into refactor_clust_tsp
srrisbud Oct 11, 2023
34b8056
Removed VRP unittests
srrisbud Oct 11, 2023
ccd2303
Clustering demo jupyter notebook added
srrisbud Oct 12, 2023
20c32ca
TSP demo jupyter notebook added
srrisbud Oct 12, 2023
2f04764
Merge branch 'lava-nc:main' into main
srrisbud Oct 17, 2023
04b454e
Merge branch 'main' into refactor_clust_tsp
srrisbud Oct 17, 2023
b4e670e
Merge branch 'main' into refactor_clust_tsp
srrisbud Oct 31, 2023
b36d1b2
Merge branch 'main' into refactor_clust_tsp
srrisbud Nov 9, 2023
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -60,6 +60,7 @@ scipy = "^1.10.1"
nbformat = "^5.7.1"
seaborn = "^0.12.2"


[tool.poetry.dev-dependencies]
bandit = "1.7.4"
coverage = "^6.3.2"
Expand Down
157 changes: 157 additions & 0 deletions src/lava/lib/optimization/apps/clustering/problems.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,157 @@
# Copyright (C) 2023 Intel Corporation
# SPDX-License-Identifier: BSD-3-Clause
# See: https://spdx.org/licenses/

import networkx as ntx
import numpy as np
import typing as ty


class ClusteringProblem:
"""Problem specification for a clustering problem.

N points need to be clustered into M clusters.

The cluster centers are *given*. Clustering is done to assign cluster IDs
to points based on the closest cluster centers.
"""
def __init__(self,
point_coords: ty.List[ty.Tuple[int, int]],
center_coords: ty.Union[int, ty.List[ty.Tuple[int, int]]],
edges: ty.Optional[ty.List[ty.Tuple[int, int]]] = None):
"""
Parameters
----------
point_coords : list(tuple(int, int))
A list of integer tuples corresponding to the coordinates of
points to be clustered.
center_coords : list(tuple(int, int))
A list of integer tuples corresponding to the coordinates of
cluster-centers.
edges : (Optional) list(tuple(int, int, float))
An optional list of edges connecting points and cluster centers,
given as a list of triples (ID1, ID2, weight). See the note
below for ID-scheme. If None, assume all-to-all connectivity
between points, weighted by their pairwise distances.

Notes
-----
IDs 1 to M correspond to cluster centers and (M+1) to (M+N) correspond
to the points to be clustered.
"""
super().__init__()
self._point_coords = point_coords
self._center_coords = center_coords
self._num_points = len(self._point_coords)
self._num_clusters = len(self._center_coords)
self._cluster_ids = list(np.arange(1, self._num_clusters + 1))
self._point_ids = list(np.arange(
self._num_clusters + 1, self._num_clusters + self._num_points + 1))
self._points = dict(zip(self._point_ids, self._point_coords))
self._cluster_centers = dict(zip(self._cluster_ids,
self._center_coords))
if edges:
self._edges = edges
else:
self._edges = []

self._problem_graph = None

@property
def points(self):
return self._points

@points.setter
def points(self, points: ty.Dict[int, ty.Tuple[int, int]]):
self._points = points

@property
def point_ids(self):
return self._point_ids

@property
def point_coords(self):
return self._point_coords

@property
def num_points(self):
return self._num_points

@property
def edges(self):
return self._edges

@property
def cluster_centers(self):
return self._cluster_centers

@cluster_centers.setter
def cluster_centers(self, cluster_centers: ty.Dict[int, ty.Tuple[int,
int]]):
self._cluster_centers = cluster_centers

@property
def cluster_ids(self):
return self._cluster_ids

@property
def center_coords(self):
return self._center_coords

@property
def num_clusters(self):
return self._num_clusters

@property
def problem_graph(self):
"""NetworkX problem graph is created and returned.

If edges are specified, they are taken into account.
Returns
-------
A graph object corresponding to the problem.
"""
if not self._problem_graph:
self._generate_problem_graph()
return self._problem_graph

def _generate_problem_graph(self):
if len(self.edges) > 0:
gph = ntx.DiGraph()
# Add the nodes to be visited
gph.add_nodes_from(self.point_ids)
# If there are user-provided edges, add them between the nodes
gph.add_edges_from(self.edges)
else:
gph = ntx.complete_graph(self.point_ids, create_using=ntx.DiGraph())

node_type_dict = dict(zip(self.point_ids,
["Point"] * len(self.point_ids)))
# Associate node type as "Node" and node coordinates as attributes
ntx.set_node_attributes(gph, node_type_dict, name="Type")
ntx.set_node_attributes(gph, self.points, name="Coordinates")

# Add vehicles as nodes
gph.add_nodes_from(self.cluster_ids)
# Associate node type as "Vehicle" and vehicle coordinates as attributes
cluster_center_type_dict = dict(zip(self.cluster_ids,
["Cluster Center"] * len(
self.cluster_ids)))
ntx.set_node_attributes(gph, cluster_center_type_dict, name="Type")
ntx.set_node_attributes(gph, self.cluster_centers, name="Coordinates")

# Add edges from initial vehicle positions to all nodes (oneway edges)
for cid in self.cluster_ids:
for pid in self.points:
gph.add_edge(cid, pid)

# Compute Euclidean distance along all edges and assign them as edge
# weights
# ToDo: Replace the loop with independent distance matrix computation
# and then assign the distances as attributes
for edge in gph.edges.keys():
gph.edges[edge]["cost"] = np.linalg.norm(
np.array(gph.nodes[edge[1]]["Coordinates"]) - np.array(
gph.nodes[edge[0]]["Coordinates"]))

self._problem_graph = gph
202 changes: 202 additions & 0 deletions src/lava/lib/optimization/apps/clustering/solver.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,202 @@
# Copyright (C) 2023 Intel Corporation
# SPDX-License-Identifier: BSD-3-Clause
# See: https://spdx.org/licenses/


import numpy as np
from pprint import pprint
from dataclasses import dataclass

from lava.lib.optimization.problems.problems import QUBO
from lava.lib.optimization.solvers.generic.solver import OptimizationSolver, \
SolverReport
from lava.lib.optimization.apps.clustering.problems import ClusteringProblem
from lava.lib.optimization.apps.clustering.utils.q_matrix_generator import \
QMatrixClust

import typing as ty
import numpy.typing as npty

from lava.magma.core.resources import (
CPU,
Loihi2NeuroCore,
NeuroCore,
)
from lava.lib.optimization.solvers.generic.solver import SolverConfig

BACKENDS = ty.Union[CPU, Loihi2NeuroCore, NeuroCore, str]
CPUS = [CPU, "CPU"]
NEUROCORES = [Loihi2NeuroCore, NeuroCore, "Loihi2"]

BACKEND_MSG = f""" was requested as backend. However,
the solver currently supports only Loihi 2 and CPU backends.
These can be specified by calling solve with any of the following:
backend = "CPU"
backend = "Loihi2"
backend = CPU
backend = Loihi2NeuroCore
backend = NeuroCoreS
The explicit resource classes can be imported from
lava.magma.core.resources"""


@dataclass
class ClusteringConfig(SolverConfig):
"""Solver configuration for VRP solver.

Parameters
----------
core_solver : CoreSolver
Core algorithm that solves a given VRP. Possible values are
CoreSolver.VRPY_CPU or CoreSolver.LAVA_QUBO.

Notes
-----
VRPConfig class inherits from `SolverConfig` class at
`lava.lib.optimization.solvers.generic.solver`. Please refer to the
documentation for `SolverConfig` to know more about other arguments that
can be passed.
"""

do_distance_sparsification: bool = False
sparsification_algo: str = "cutoff"
max_dist_cutoff_fraction: float = 1.0
profile_q_mat_gen: bool = False
only_gen_q_mat: bool = False


@dataclass
class ClusteringSolution:
"""Clustering solution holds two dictionaries:
- `clustering_id_map` holds a map from cluster center ID to a list
of point IDs
- `clustering_coords_map` holds a map from the cluster center
coordinates to the point coordinates
"""
clustering_id_map: dict = None
clustering_coords_map: dict = None


class ClusteringSolver:
"""Solver for clustering problems, given cluster centers.
"""
def __init__(self, clp: ClusteringProblem):
self.problem = clp
self._solver = None
self._profiler = None
self.dist_sparsity = 0.
self.dist_proxy_sparsity = 0.
self.q_gen_time = 0.
self.q_shape = None
self.raw_solution = None
self.solution = ClusteringSolution()

@property
def solver(self):
return self._solver

@property
def profiler(self):
return self._profiler

def solve(self, scfg: ClusteringConfig = ClusteringConfig()):
"""
Solve a clustering problem using a given solver configuration.

Parameters
----------
scfg (ClusteringConfig) : Configuration parameters.

Notes
-----
The solver object also stores profiling data as its attributes.
"""
# 1. Generate Q matrix for clustering
node_list_for_clustering = self.problem.center_coords + \
self.problem.point_coords
# number of binary variables = total_num_nodes * num_clusters
mat_size = len(node_list_for_clustering) * self.problem.num_clusters
q_mat_obj = QMatrixClust(
node_list_for_clustering,
num_clusters=self.problem.num_clusters,
lambda_dist=1,
lambda_points=100,
lambda_centers=100,
fixed_pt=True,
fixed_pt_range=(-128, 127),
clust_dist_sparse_params={
"do_sparse": scfg.do_distance_sparsification,
"algo": scfg.sparsification_algo,
"max_dist_cutoff_fraction": scfg.max_dist_cutoff_fraction},
profile_mat_gen=scfg.profile_q_mat_gen)
q_mat = q_mat_obj.matrix.astype(int)
self.dist_sparsity = q_mat_obj.dist_sparsity
self.dist_proxy_sparsity = q_mat_obj.dist_proxy_sparsity
if scfg.profile_q_mat_gen:
self.q_gen_time = q_mat_obj.time_to_gen_mat
self.q_shape = q_mat.shape
# 2. Call Lava QUBO solvers
if not scfg.only_gen_q_mat:
prob = QUBO(q=q_mat)
self._solver = OptimizationSolver(problem=prob)
hparams = {
srrisbud marked this conversation as resolved.
Show resolved Hide resolved
'neuron_model': 'nebm-sa-refract',
'refract': 10,
'refract_scaling': 6,
'init_state': np.random.randint(0, 2, size=(mat_size,)),
'min_temperature': 1,
'max_temperature': 5,
'steps_per_temperature': 200
}
if not scfg.hyperparameters:
scfg.hyperparameters.update(hparams)
report: SolverReport = self._solver.solve(config=scfg)
if report.profiler:
self._profiler = report.profiler
pprint(f"Clustering execution"
f" took {np.sum(report.profiler.execution_time)}s")
# 3. Post process the clustering solution
self.raw_solution: npty.NDArray = \
report.best_state.reshape((self.problem.num_clusters,
len(node_list_for_clustering))).T
else:
self.raw_solution = -1 * np.ones((self.problem.num_clusters,
len(node_list_for_clustering))).T

self.post_process_sol()

def post_process_sol(self):
"""
Post-process the clustering solution returned by `solve()`.

The clustering solution returned by the `solve` method is a 2-D
binary numpy array, wherein the columns correspond to clusters and
rows correspond to points or cluster centers. entry (i, j) is 1 if
point/cluster center 'i' belongs to cluster 'j'.
"""

coord_list = (self.problem.center_coords + self.problem.point_coords)
id_map = {}
coord_map = {}
for j, col in enumerate(self.raw_solution.T):
node_idxs = np.nonzero(col)
# ID of "this" cluster is the only nonzero row in this column
# from row 0 to row 'num_clusters' - 1
this_cluster_id = \
(node_idxs[0][node_idxs[0] < self.problem.num_clusters] + 1)
if len(this_cluster_id) != 1:
raise ValueError(f"More than one cluster center found in "
f"{j}th cluster. Clustering might not have "
f"converged to a valid solution.")
node_idxs = node_idxs[0][node_idxs[0] >= self.problem.num_clusters]
id_map.update({this_cluster_id.item(): (node_idxs + 1).tolist()})

this_center_coords = np.array(coord_list)[this_cluster_id - 1, :]
point_coords_this_cluster = np.array(coord_list)[node_idxs, :]
point_coords_this_cluster = \
[tuple(point) for point in point_coords_this_cluster.tolist()]
coord_map.update({
tuple(this_center_coords.flatten()): point_coords_this_cluster})

self.solution.clustering_id_map = id_map
self.solution.clustering_coords_map = coord_map
Loading
Loading