Skip to content

Commit

Permalink
feat: Define dependent version of Fin.foldl (#1071)
Browse files Browse the repository at this point in the history
Co-authored-by: F. G. Dorais <fgdorais@gmail.com>
  • Loading branch information
quangvdao and fgdorais authored Dec 4, 2024
1 parent 7805acf commit c016aa9
Show file tree
Hide file tree
Showing 2 changed files with 208 additions and 1 deletion.
72 changes: 72 additions & 0 deletions Batteries/Data/Fin/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -17,3 +17,75 @@ alias enum := Array.finRange

@[deprecated (since := "2024-11-15")]
alias list := List.finRange

/-- Heterogeneous fold over `Fin n` from the right: `foldr 3 f x = f 0 (f 1 (f 2 x))`, where
`f 2 : α 3 → α 2`, `f 1 : α 2 → α 1`, etc.
This is the dependent version of `Fin.foldr`. -/
@[inline] def dfoldr (n : Nat) (α : Fin (n + 1) → Sort _)
(f : ∀ (i : Fin n), α i.succ → α i.castSucc) (init : α (last n)) : α 0 :=
loop n (Nat.lt_succ_self n) init where
/-- Inner loop for `Fin.dfoldr`.
`Fin.dfoldr.loop n α f i h x = f 0 (f 1 (... (f i x)))` -/
@[specialize] loop (i : Nat) (h : i < n + 1) (x : α ⟨i, h⟩) : α 0 :=
match i with
| i + 1 => loop i (Nat.lt_of_succ_lt h) (f ⟨i, Nat.lt_of_succ_lt_succ h⟩ x)
| 0 => x

/-- Heterogeneous monadic fold over `Fin n` from right to left:
```
Fin.foldrM n f xₙ = do
let xₙ₋₁ : α (n-1) ← f (n-1) xₙ
let xₙ₋₂ : α (n-2) ← f (n-2) xₙ₋₁
...
let x₀ : α 0 ← f 0 x₁
pure x₀
```
This is the dependent version of `Fin.foldrM`, defined using `Fin.dfoldr`. -/
@[inline] def dfoldrM [Monad m] (n : Nat) (α : Fin (n + 1) → Sort _)
(f : ∀ (i : Fin n), α i.succ → m (α i.castSucc)) (init : α (last n)) : m (α 0) :=
dfoldr n (fun i => m (α i)) (fun i x => x >>= f i) (pure init)

/-- Heterogeneous fold over `Fin n` from the left: `foldl 3 f x = f 0 (f 1 (f 2 x))`, where
`f 0 : α 0 → α 1`, `f 1 : α 1 → α 2`, etc.
This is the dependent version of `Fin.foldl`. -/
@[inline] def dfoldl (n : Nat) (α : Fin (n + 1) → Sort _)
(f : ∀ (i : Fin n), α i.castSucc → α i.succ) (init : α 0) : α (last n) :=
loop 0 (Nat.zero_lt_succ n) init where
/-- Inner loop for `Fin.dfoldl`. `Fin.dfoldl.loop n α f i h x = f n (f (n-1) (... (f i x)))` -/
@[semireducible, specialize] loop (i : Nat) (h : i < n + 1) (x : α ⟨i, h⟩) : α (last n) :=
if h' : i < n then
loop (i + 1) (Nat.succ_lt_succ h') (f ⟨i, h'⟩ x)
else
haveI : ⟨i, h⟩ = last n := by ext; simp; omega
_root_.cast (congrArg α this) x

/-- Heterogeneous monadic fold over `Fin n` from left to right:
```
Fin.foldlM n f x₀ = do
let x₁ : α 1 ← f 0 x₀
let x₂ : α 2 ← f 1 x₁
...
let xₙ : α n ← f (n-1) xₙ₋₁
pure xₙ
```
This is the dependent version of `Fin.foldlM`. -/
@[inline] def dfoldlM [Monad m] (n : Nat) (α : Fin (n + 1) → Sort _)
(f : ∀ (i : Fin n), α i.castSucc → m (α i.succ)) (init : α 0) : m (α (last n)) :=
loop 0 (Nat.zero_lt_succ n) init where
/-- Inner loop for `Fin.dfoldlM`.
```
Fin.foldM.loop n α f i h xᵢ = do
let xᵢ₊₁ : α (i+1) ← f i xᵢ
...
let xₙ : α n ← f (n-1) xₙ₋₁
pure xₙ
```
-/
@[semireducible, specialize] loop (i : Nat) (h : i < n + 1) (x : α ⟨i, h⟩) : m (α (last n)) :=
if h' : i < n then
(f ⟨i, h'⟩ x) >>= loop (i + 1) (Nat.succ_lt_succ h')
else
haveI : ⟨i, h⟩ = last n := by ext; simp; omega
_root_.cast (congrArg (fun i => m (α i)) this) (pure x)
137 changes: 136 additions & 1 deletion Batteries/Data/Fin/Fold.lean
Original file line number Diff line number Diff line change
@@ -1,12 +1,147 @@
/-
Copyright (c) 2024 François G. Dorais. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: François G. Dorais
Authors: François G. Dorais, Quang Dao
-/
import Batteries.Data.List.FinRange
import Batteries.Data.Fin.Basic

namespace Fin

/-! ### dfoldr -/

theorem dfoldr_loop_zero (f : (i : Fin n) → α i.succ → α i.castSucc) (x) :
dfoldr.loop n α f 0 (Nat.zero_lt_succ n) x = x := rfl

theorem dfoldr_loop_succ (f : (i : Fin n) → α i.succ → α i.castSucc) (h : i < n) (x) :
dfoldr.loop n α f (i+1) (Nat.add_lt_add_right h 1) x =
dfoldr.loop n α f i (Nat.lt_add_right 1 h) (f ⟨i, h⟩ x) := rfl

theorem dfoldr_loop (f : (i : Fin (n+1)) → α i.succ → α i.castSucc) (h : i+1 ≤ n+1) (x) :
dfoldr.loop (n+1) α f (i+1) (Nat.add_lt_add_right h 1) x =
f 0 (dfoldr.loop n (α ∘ succ) (f ·.succ) i h x) := by
induction i with
| zero => rfl
| succ i ih => exact ih ..

@[simp] theorem dfoldr_zero (f : (i : Fin 0) → α i.succ → α i.castSucc) (x) :
dfoldr 0 α f x = x := rfl

theorem dfoldr_succ (f : (i : Fin (n+1)) → α i.succ → α i.castSucc) (x) :
dfoldr (n+1) α f x = f 0 (dfoldr n (α ∘ succ) (f ·.succ) x) := dfoldr_loop ..

theorem dfoldr_succ_last (f : (i : Fin (n+1)) → α i.succ → α i.castSucc) (x) :
dfoldr (n+1) α f x = dfoldr n (α ∘ castSucc) (f ·.castSucc) (f (last n) x) := by
induction n with
| zero => simp only [dfoldr_succ, dfoldr_zero, last, zero_eta]
| succ n ih => rw [dfoldr_succ, ih (α := α ∘ succ) (f ·.succ), dfoldr_succ]; congr

theorem dfoldr_eq_dfoldrM (f : (i : Fin n) → α i.succ → α i.castSucc) (x) :
dfoldr n α f x = dfoldrM (m:=Id) n α f x := rfl

theorem dfoldr_eq_foldr (f : Fin n → α → α) (x : α) : dfoldr n (fun _ => α) f x = foldr n f x := by
induction n with
| zero => simp only [dfoldr_zero, foldr_zero]
| succ n ih => simp only [dfoldr_succ, foldr_succ, Function.comp_apply, Function.comp_def, ih]

/-! ### dfoldrM -/

@[simp] theorem dfoldrM_zero [Monad m] (f : (i : Fin 0) → α i.succ → m (α i.castSucc)) (x) :
dfoldrM 0 α f x = pure x := rfl

theorem dfoldrM_succ [Monad m] (f : (i : Fin (n+1)) → α i.succ → m (α i.castSucc))
(x) : dfoldrM (n+1) α f x = dfoldrM n (α ∘ succ) (f ·.succ) x >>= f 0 := dfoldr_succ ..

theorem dfoldrM_eq_foldrM [Monad m] [LawfulMonad m] (f : (i : Fin n) → α → m α) (x : α) :
dfoldrM n (fun _ => α) f x = foldrM n f x := by
induction n generalizing x with
| zero => simp only [dfoldrM_zero, foldrM_zero]
| succ n ih => simp only [dfoldrM_succ, foldrM_succ, Function.comp_def, ih]

/-! ### dfoldl -/

theorem dfoldl_loop_lt (f : ∀ (i : Fin n), α i.castSucc → α i.succ) (h : i < n) (x) :
dfoldl.loop n α f i (Nat.lt_add_right 1 h) x =
dfoldl.loop n α f (i+1) (Nat.add_lt_add_right h 1) (f ⟨i, h⟩ x) := by
rw [dfoldl.loop, dif_pos h]

theorem dfoldl_loop_eq (f : ∀ (i : Fin n), α i.castSucc → α i.succ) (x) :
dfoldl.loop n α f n (Nat.le_refl _) x = x := by
rw [dfoldl.loop, dif_neg (Nat.lt_irrefl _), cast_eq]

@[simp] theorem dfoldl_zero (f : (i : Fin 0) → α i.castSucc → α i.succ) (x) :
dfoldl 0 α f x = x := dfoldl_loop_eq ..

theorem dfoldl_loop (f : (i : Fin (n+1)) → α i.castSucc → α i.succ) (h : i < n+1) (x) :
dfoldl.loop (n+1) α f i (Nat.lt_add_right 1 h) x =
dfoldl.loop n (α ∘ succ) (f ·.succ ·) i h (f ⟨i, h⟩ x) := by
if h' : i < n then
rw [dfoldl_loop_lt _ h _]
rw [dfoldl_loop_lt _ h' _, dfoldl_loop]; rfl
else
cases Nat.le_antisymm (Nat.le_of_lt_succ h) (Nat.not_lt.1 h')
rw [dfoldl_loop_lt]
rw [dfoldl_loop_eq, dfoldl_loop_eq]

theorem dfoldl_succ (f : (i : Fin (n+1)) → α i.castSucc → α i.succ) (x) :
dfoldl (n+1) α f x = dfoldl n (α ∘ succ) (f ·.succ ·) (f 0 x) := dfoldl_loop ..

theorem dfoldl_succ_last (f : (i : Fin (n+1)) → α i.castSucc → α i.succ) (x) :
dfoldl (n+1) α f x = f (last n) (dfoldl n (α ∘ castSucc) (f ·.castSucc ·) x) := by
rw [dfoldl_succ]
induction n with
| zero => simp [dfoldl_succ, last]
| succ n ih => rw [dfoldl_succ, @ih (α ∘ succ) (f ·.succ ·), dfoldl_succ]; congr

theorem dfoldl_eq_foldl (f : Fin n → α → α) (x : α) :
dfoldl n (fun _ => α) f x = foldl n (fun x i => f i x) x := by
induction n generalizing x with
| zero => simp only [dfoldl_zero, foldl_zero]
| succ n ih =>
simp only [dfoldl_succ, foldl_succ, Function.comp_apply, Function.comp_def]
congr; simp only [ih]

/-! ### dfoldlM -/

theorem dfoldlM_loop_lt [Monad m] (f : ∀ (i : Fin n), α i.castSucc → m (α i.succ)) (h : i < n) (x) :
dfoldlM.loop n α f i (Nat.lt_add_right 1 h) x =
(f ⟨i, h⟩ x) >>= (dfoldlM.loop n α f (i+1) (Nat.add_lt_add_right h 1)) := by
rw [dfoldlM.loop, dif_pos h]

theorem dfoldlM_loop_eq [Monad m] (f : ∀ (i : Fin n), α i.castSucc → m (α i.succ)) (x) :
dfoldlM.loop n α f n (Nat.le_refl _) x = pure x := by
rw [dfoldlM.loop, dif_neg (Nat.lt_irrefl _), cast_eq]

@[simp] theorem dfoldlM_zero [Monad m] (f : (i : Fin 0) → α i.castSucc → m (α i.succ)) (x) :
dfoldlM 0 α f x = pure x := dfoldlM_loop_eq ..

theorem dfoldlM_loop [Monad m] (f : (i : Fin (n+1)) → α i.castSucc → m (α i.succ)) (h : i < n+1)
(x) : dfoldlM.loop (n+1) α f i (Nat.lt_add_right 1 h) x =
f ⟨i, h⟩ x >>= (dfoldlM.loop n (α ∘ succ) (f ·.succ ·) i h .) := by
if h' : i < n then
rw [dfoldlM_loop_lt _ h _]
congr; funext
rw [dfoldlM_loop_lt _ h' _, dfoldlM_loop]; rfl
else
cases Nat.le_antisymm (Nat.le_of_lt_succ h) (Nat.not_lt.1 h')
rw [dfoldlM_loop_lt]
congr; funext
rw [dfoldlM_loop_eq, dfoldlM_loop_eq]

theorem dfoldlM_succ [Monad m] (f : (i : Fin (n+1)) → α i.castSucc → m (α i.succ)) (x) :
dfoldlM (n+1) α f x = f 0 x >>= (dfoldlM n (α ∘ succ) (f ·.succ ·) .) :=
dfoldlM_loop ..

theorem dfoldlM_eq_foldlM [Monad m] (f : (i : Fin n) → α → m α) (x : α) :
dfoldlM n (fun _ => α) f x = foldlM n (fun x i => f i x) x := by
induction n generalizing x with
| zero => simp only [dfoldlM_zero, foldlM_zero]
| succ n ih =>
simp only [dfoldlM_succ, foldlM_succ, Function.comp_apply, Function.comp_def]
congr; ext; simp only [ih]

/-! ### `Fin.fold{l/r}{M}` equals `List.fold{l/r}{M}` -/

theorem foldlM_eq_foldlM_finRange [Monad m] (f : α → Fin n → m α) (x) :
foldlM n f x = (List.finRange n).foldlM f x := by
induction n generalizing x with
Expand Down

0 comments on commit c016aa9

Please sign in to comment.