Skip to content

Commit

Permalink
feat: List.dropPrefix? / dropSuffix? / dropInfix? and specification l…
Browse files Browse the repository at this point in the history
…emmas (#1066)

Co-authored-by: François G. Dorais <fgdorais@gmail.com>
  • Loading branch information
kim-em and fgdorais authored Nov 27, 2024
1 parent f6d16c2 commit c933dd9
Show file tree
Hide file tree
Showing 2 changed files with 177 additions and 0 deletions.
32 changes: 32 additions & 0 deletions Batteries/Data/List/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -1065,5 +1065,37 @@ where
| [], r => reverseAux (a :: r) [] -- Note: `reverseAux` is tail recursive.
| b :: l, r => bif p b then reverseAux (a :: r) (b :: l) else loop l (b :: r)

/-- `dropPrefix? l p` returns
`some r` if `l = p' ++ r` for some `p'` which is paiwise `==` to `p`,
and `none` otherwise. -/
def dropPrefix? [BEq α] : List α → List α → Option (List α)
| list, [] => some list
| [], _ :: _ => none
| a :: as, b :: bs => if a == b then dropPrefix? as bs else none

/-- `dropSuffix? l s` returns
`some r` if `l = r ++ s'` for some `s'` which is paiwise `==` to `s`,
and `none` otherwise. -/
def dropSuffix? [BEq α] (l s : List α) : Option (List α) :=
let (r, s') := l.splitAt (l.length - s.length)
if s' == s then some r else none

/-- `dropInfix? l i` returns
`some (p, s)` if `l = p ++ i' ++ s` for some `i'` which is paiwise `==` to `i`,
and `none` otherwise.
Note that this is an inefficient implementation, and if computation time is a concern you should be
using the Knuth-Morris-Pratt algorithm as implemented in `Batteries.Data.List.Matcher`.
-/
def dropInfix? [BEq α] (l i : List α) : Option (List α × List α) :=
go l []
where
/-- Inner loop for `dropInfix?`. -/
go : List α → List α → Option (List α × List α)
| [], acc => if i.isEmpty then some (acc.reverse, []) else none
| a :: as, acc => match (a :: as).dropPrefix? i with
| none => go as (a :: acc)
| some s => (acc.reverse, s)

/-- `finRange n` lists all elements of `Fin n` in order -/
def finRange (n : Nat) : List (Fin n) := ofFn fun i => i
145 changes: 145 additions & 0 deletions Batteries/Data/List/Lemmas.lean
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,26 @@ namespace List
@[simp] theorem getElem_mk {xs : List α} {i : Nat} (h : i < xs.length) :
(Array.mk xs)[i] = xs[i] := rfl

/-! ### == -/

@[simp] theorem beq_nil_iff [BEq α] {l : List α} : (l == []) = l.isEmpty := by
cases l <;> rfl

@[simp] theorem nil_beq_iff [BEq α] {l : List α} : ([] == l) = l.isEmpty := by
cases l <;> rfl

@[simp] theorem cons_beq_cons [BEq α] {a b : α} {l₁ l₂ : List α} :
(a :: l₁ == b :: l₂) = (a == b && l₁ == l₂) := rfl

theorem length_eq_of_beq [BEq α] {l₁ l₂ : List α} (h : l₁ == l₂) : l₁.length = l₂.length :=
match l₁, l₂ with
| [], [] => rfl
| [], _ :: _ => by simp [beq_nil_iff] at h
| _ :: _, [] => by simp [nil_beq_iff] at h
| a :: l₁, b :: l₂ => by
simp at h
simpa using length_eq_of_beq h.2

/-! ### next? -/

@[simp] theorem next?_nil : @next? α [] = none := rfl
Expand Down Expand Up @@ -508,6 +528,131 @@ theorem insertP_loop (a : α) (l r : List α) :
induction l with simp [insertP, insertP.loop, cond]
| cons _ _ ih => split <;> simp [insertP_loop, ih]

/-! ### dropPrefix?, dropSuffix?, dropInfix?-/

open Option

@[simp] theorem dropPrefix?_nil [BEq α] {p : List α} : dropPrefix? p [] = some p := by
simp [dropPrefix?]

theorem dropPrefix?_eq_some_iff [BEq α] {l p s : List α} :
dropPrefix? l p = some s ↔ ∃ p', l = p' ++ s ∧ p' == p := by
unfold dropPrefix?
split
· simp
· simp
· rename_i a as b bs
simp only [ite_none_right_eq_some]
constructor
· rw [dropPrefix?_eq_some_iff]
rintro ⟨w, p', rfl, h⟩
refine ⟨a :: p', by simp_all⟩
· rw [dropPrefix?_eq_some_iff]
rintro ⟨p, h, w⟩
rw [cons_eq_append_iff] at h
obtain (⟨rfl, rfl⟩ | ⟨a', rfl, rfl⟩) := h
· simp at w
· simp only [cons_beq_cons, Bool.and_eq_true] at w
refine ⟨w.1, a', rfl, w.2

theorem dropPrefix?_append_of_beq [BEq α] {l₁ l₂ : List α} (p : List α) (h : l₁ == l₂) :
dropPrefix? (l₁ ++ p) l₂ = some p := by
simp [dropPrefix?_eq_some_iff, h]

theorem dropSuffix?_eq_some_iff [BEq α] {l p s : List α} :
dropSuffix? l s = some p ↔ ∃ s', l = p ++ s' ∧ s' == s := by
unfold dropSuffix?
rw [splitAt_eq]
simp only [ite_none_right_eq_some, some.injEq]
constructor
· rintro ⟨w, rfl⟩
refine ⟨_, by simp, w⟩
· rintro ⟨s', rfl, w⟩
simp [length_eq_of_beq w, w]

@[simp] theorem dropSuffix?_nil [BEq α] {s : List α} : dropSuffix? s [] = some s := by
simp [dropSuffix?_eq_some_iff]

theorem dropInfix?_go_eq_some_iff [BEq α] {i l acc p s : List α} :
dropInfix?.go i l acc = some (p, s) ↔ ∃ p',
p = acc.reverse ++ p' ∧
-- `i` is an infix up to `==`
(∃ i', l = p' ++ i' ++ s ∧ i' == i) ∧
-- and there is no shorter prefix for which that is the case
(∀ p'' i'' s'', l = p'' ++ i'' ++ s'' → i'' == i → p''.length ≥ p'.length) := by
unfold dropInfix?.go
split
· simp only [isEmpty_eq_true, ite_none_right_eq_some, some.injEq, Prod.mk.injEq, nil_eq,
append_assoc, append_eq_nil, ge_iff_le, and_imp]
constructor
· rintro ⟨rfl, rfl, rfl⟩
simp
· rintro ⟨p', rfl, ⟨_, ⟨rfl, rfl, rfl⟩, h⟩, w⟩
simp_all
· rename_i a t
split <;> rename_i h
· rw [dropInfix?_go_eq_some_iff]
constructor
· rintro ⟨p', rfl, ⟨i', rfl, h₂⟩, w⟩
refine ⟨a :: p', ?_⟩
simp [h₂]
intro p'' i'' s'' h₁ h₂
rw [cons_eq_append_iff] at h₁
obtain (⟨rfl, h₁⟩ | ⟨p'', rfl, h₁⟩) := h₁
· rw [append_assoc, ← h₁] at h
have := dropPrefix?_append_of_beq s'' h₂
simp_all
· simpa using w p'' i'' s'' (by simpa using h₁) h₂
· rintro ⟨p', rfl, ⟨i', h₁, h₂⟩, w⟩
rw [cons_eq_append_iff] at h₁
simp at h₁
obtain (⟨⟨rfl, rfl⟩, rfl⟩ | ⟨a', h₁, rfl⟩) := h₁
· simp only [nil_beq_iff, isEmpty_eq_true] at h₂
simp only [h₂] at h
simp at h
· rw [append_eq_cons_iff] at h₁
obtain (⟨rfl, rfl⟩ | ⟨p', rfl, rfl⟩) := h₁
· rw [← cons_append] at h
have := dropPrefix?_append_of_beq s h₂
simp_all
· refine ⟨p', ?_⟩
simp only [reverse_cons, append_assoc, singleton_append, append_cancel_left_eq,
append_cancel_right_eq, exists_eq_left', ge_iff_le, true_and]
refine ⟨h₂, ?_⟩
intro p'' i'' s'' h₃ h₄
rw [← append_assoc] at h₃
rw [h₃] at w
simpa using w (a :: p'') i'' s'' (by simp) h₄
· rename_i s'
simp only [some.injEq, Prod.mk.injEq, append_assoc, ge_iff_le]
rw [dropPrefix?_eq_some_iff] at h
obtain ⟨p', h, w⟩ := h
constructor
· rintro ⟨rfl, rfl⟩
simpa using ⟨p', by simp_all⟩
· rintro ⟨p'', rfl, ⟨i', h₁, h₂⟩, w'⟩
specialize w' [] p' s' (by simpa using h) w
simp at w'
simp [w'] at h₁ ⊢
rw [h] at h₁
apply append_inj_right h₁
replace w := length_eq_of_beq w
replace h₂ := length_eq_of_beq h₂
simp_all

theorem dropInfix?_eq_some_iff [BEq α] {l i p s : List α} :
dropInfix? l i = some (p, s) ↔
-- `i` is an infix up to `==`
(∃ i', l = p ++ i' ++ s ∧ i' == i) ∧
-- and there is no shorter prefix for which that is the case
(∀ p' i' s', l = p' ++ i' ++ s' → i' == i → p'.length ≥ p.length) := by
unfold dropInfix?
rw [dropInfix?_go_eq_some_iff]
simp

@[simp] theorem dropInfix?_nil [BEq α] {s : List α} : dropInfix? s [] = some ([], s) := by
simp [dropInfix?_eq_some_iff]

/-! ### deprecations -/

@[deprecated (since := "2024-08-15")] alias isEmpty_iff_eq_nil := isEmpty_iff
Expand Down

0 comments on commit c933dd9

Please sign in to comment.