Skip to content

Commit

Permalink
feat(RelSeries): {head,last}_map (#15387)
Browse files Browse the repository at this point in the history
from the Carleson project
  • Loading branch information
nomeata authored and bjoernkjoshanssen committed Sep 11, 2024
1 parent b9eada5 commit c120b0f
Showing 1 changed file with 10 additions and 0 deletions.
10 changes: 10 additions & 0 deletions Mathlib/Order/RelSeries.lean
Original file line number Diff line number Diff line change
Expand Up @@ -305,6 +305,10 @@ def map (p : RelSeries r) (f : r →r s) : RelSeries s where
@[simp] lemma map_apply (p : RelSeries r) (f : r →r s) (i : Fin (p.length + 1)) :
p.map f i = f (p i) := rfl

@[simp] lemma head_map (p : RelSeries r) (f : r →r s) : (p.map f).head = f p.head := rfl

@[simp] lemma last_map (p : RelSeries r) (f : r →r s) : (p.map f).last = f p.last := rfl

/--
If `a₀ -r→ a₁ -r→ ... -r→ aₙ` is an `r`-series and `a` is such that
`aᵢ -r→ a -r→ a_ᵢ₊₁`, then
Expand Down Expand Up @@ -638,6 +642,12 @@ can be pushed out to a strict chain of `β` by
def map (p : LTSeries α) (f : α → β) (hf : StrictMono f) : LTSeries β :=
LTSeries.mk p.length (f.comp p) (hf.comp p.strictMono)

@[simp] lemma head_map (p : LTSeries α) (f : α → β) (hf : StrictMono f) :
(p.map f hf).head = f p.head := rfl

@[simp] lemma last_map (p : LTSeries α) (f : α → β) (hf : StrictMono f) :
(p.map f hf).last = f p.last := rfl

/--
For two preorders `α, β`, if `f : α → β` is surjective and strictly comonotonic, then a
strict series of `β` can be pulled back to a strict chain of `α` by
Expand Down

0 comments on commit c120b0f

Please sign in to comment.