Skip to content

Commit

Permalink
chore: switch primes on List.getElem_take
Browse files Browse the repository at this point in the history
fix

fix
  • Loading branch information
kim-em committed Sep 10, 2024
1 parent c96fbdd commit 180c1ce
Show file tree
Hide file tree
Showing 2 changed files with 29 additions and 9 deletions.
2 changes: 1 addition & 1 deletion src/Init/Data/List/Nat/Range.lean
Original file line number Diff line number Diff line change
Expand Up @@ -176,7 +176,7 @@ theorem pairwise_le_range (n : Nat) : Pairwise (· ≤ ·) (range n) :=
theorem take_range (m n : Nat) : take m (range n) = range (min m n) := by
apply List.ext_getElem
· simp
· simp (config := { contextual := true }) [getElem_take, Nat.lt_min]
· simp (config := { contextual := true }) [getElem_take, Nat.lt_min]

theorem nodup_range (n : Nat) : Nodup (range n) := by
simp (config := {decide := true}) only [range_eq_range', nodup_range']
Expand Down
36 changes: 28 additions & 8 deletions src/Init/Data/List/Nat/TakeDrop.lean
Original file line number Diff line number Diff line change
Expand Up @@ -35,31 +35,31 @@ theorem length_take_of_le (h : n ≤ length l) : length (take n l) = n := by sim

/-- The `i`-th element of a list coincides with the `i`-th element of any of its prefixes of
length `> i`. Version designed to rewrite from the big list to the small list. -/
theorem getElem_take (L : List α) {i j : Nat} (hi : i < L.length) (hj : i < j) :
theorem getElem_take' (L : List α) {i j : Nat} (hi : i < L.length) (hj : i < j) :
L[i] = (L.take j)[i]'(length_take .. ▸ Nat.lt_min.mpr ⟨hj, hi⟩) :=
getElem_of_eq (take_append_drop j L).symm _ ▸ getElem_append ..

/-- The `i`-th element of a list coincides with the `i`-th element of any of its prefixes of
length `> i`. Version designed to rewrite from the small list to the big list. -/
theorem getElem_take' (L : List α) {j i : Nat} {h : i < (L.take j).length} :
theorem getElem_take (L : List α) {j i : Nat} {h : i < (L.take j).length} :
(L.take j)[i] =
L[i]'(Nat.lt_of_lt_of_le h (length_take_le' _ _)) := by
rw [length_take, Nat.lt_min] at h; rw [getElem_take L _ h.1]
rw [length_take, Nat.lt_min] at h; rw [getElem_take' L _ h.1]

/-- The `i`-th element of a list coincides with the `i`-th element of any of its prefixes of
length `> i`. Version designed to rewrite from the big list to the small list. -/
@[deprecated getElem_take (since := "2024-06-12")]
@[deprecated getElem_take' (since := "2024-06-12")]
theorem get_take (L : List α) {i j : Nat} (hi : i < L.length) (hj : i < j) :
get L ⟨i, hi⟩ = get (L.take j) ⟨i, length_take .. ▸ Nat.lt_min.mpr ⟨hj, hi⟩⟩ := by
simp [getElem_take _ hi hj]
simp [getElem_take' _ hi hj]

/-- The `i`-th element of a list coincides with the `i`-th element of any of its prefixes of
length `> i`. Version designed to rewrite from the small list to the big list. -/
@[deprecated getElem_take (since := "2024-06-12")]
theorem get_take' (L : List α) {j i} :
get (L.take j) i =
get L ⟨i.1, Nat.lt_of_lt_of_le i.2 (length_take_le' _ _)⟩ := by
simp [getElem_take']
simp [getElem_take]

theorem getElem?_take_eq_none {l : List α} {n m : Nat} (h : n ≤ m) :
(l.take n)[m]? = none :=
Expand Down Expand Up @@ -109,7 +109,7 @@ theorem getLast?_take {l : List α} : (l.take n).getLast? = if n = 0 then none e

theorem getLast_take {l : List α} (h : l.take n ≠ []) :
(l.take n).getLast h = l[n - 1]?.getD (l.getLast (by simp_all)) := by
rw [getLast_eq_getElem, getElem_take']
rw [getLast_eq_getElem, getElem_take]
simp [length_take, Nat.min_def]
simp at h
split
Expand Down Expand Up @@ -203,7 +203,7 @@ theorem map_eq_append_split {f : α → β} {l : List α} {s₁ s₂ : List β}
theorem take_prefix_take_left (l : List α) {m n : Nat} (h : m ≤ n) : take m l <+: take n l := by
rw [isPrefix_iff]
intro i w
rw [getElem?_take_of_lt, getElem_take', getElem?_eq_getElem]
rw [getElem?_take_of_lt, getElem_take, getElem?_eq_getElem]
simp only [length_take] at w
exact Nat.lt_of_lt_of_le (Nat.lt_of_lt_of_le w (Nat.min_le_left _ _)) h

Expand Down Expand Up @@ -268,6 +268,26 @@ theorem getElem?_drop (L : List α) (i j : Nat) : (L.drop i)[j]? = L[i + j]? :=
theorem get?_drop (L : List α) (i j : Nat) : get? (L.drop i) j = get? L (i + j) := by
simp

theorem mem_take_iff_getElem {l : List α} {a : α} :
a ∈ l.take n ↔ ∃ (i : Nat) (hm : i < min n l.length), l[i] = a := by
rw [mem_iff_getElem]
constructor
· rintro ⟨i, hm, rfl⟩
simp at hm
refine ⟨i, by omega, by rw [getElem_take]⟩
· rintro ⟨i, hm, rfl⟩
refine ⟨i, by simpa, by rw [getElem_take]⟩

theorem mem_drop_iff_getElem {l : List α} {a : α} :
a ∈ l.drop n ↔ ∃ (i : Nat) (hm : i + n < l.length), l[n + i] = a := by
rw [mem_iff_getElem]
constructor
· rintro ⟨i, hm, rfl⟩
simp at hm
refine ⟨i, by omega, by rw [getElem_drop]⟩
· rintro ⟨i, hm, rfl⟩
refine ⟨i, by simp; omega, by rw [getElem_drop]⟩

theorem head?_drop (l : List α) (n : Nat) :
(l.drop n).head? = l[n]? := by
rw [head?_eq_getElem?, getElem?_drop, Nat.add_zero]
Expand Down

0 comments on commit 180c1ce

Please sign in to comment.