Skip to content

Commit

Permalink
feat: add ediv_nonneg_of_nonpos_of_nonpos to DivModLemmas (#5320)
Browse files Browse the repository at this point in the history
The theorem 

```lean
namespace Int

theorem ediv_nonneg_of_nonpos_of_nonpos {a b : Int} (Ha : a ≤ 0) (Hb : b ≤ 0) : 0 ≤ a / b := by
  match a, b with
  | ofNat a, b =>
    match Int.le_antisymm Ha (ofNat_zero_le a) with
    | h1 =>
    rw [h1, zero_ediv,]
    exact Int.le_refl 0
  | a, ofNat b =>
    match Int.le_antisymm Hb (ofNat_zero_le  b) with
    | h1 =>
    rw [h1, Int.ediv_zero]
    exact Int.le_refl 0
  | negSucc a, negSucc b =>
    rw [Int.div_def, ediv]
    have le_succ {a: Int} : a ≤ a+1 := (le_add_one (Int.le_refl a))
    have h2: 0 ≤ ((↑b:Int) + 1) := Int.le_trans (ofNat_zero_le b) le_succ
    have h3: (0:Int) ≤ ↑a / (↑b + 1) := (ediv_nonneg (ofNat_zero_le a) h2)
    exact Int.le_trans h3 le_succ
```
is nontrivial to prove from existing theorems and would be nice to add
as standard theorem in DivModLemmas.

See the zullip conversation
[here](https://leanprover.zulipchat.com/#narrow/stream/113488-general/topic/Adding.20theorem.20theorem.20ediv_nonneg'.20for.20negative.20a.20and.20b)

---------

Co-authored-by: Kim Morrison <kim@tqft.net>
  • Loading branch information
sakehl and kim-em authored Sep 12, 2024
1 parent adfd6c0 commit b875627
Showing 1 changed file with 16 additions and 0 deletions.
16 changes: 16 additions & 0 deletions src/Init/Data/Int/DivModLemmas.lean
Original file line number Diff line number Diff line change
Expand Up @@ -306,6 +306,22 @@ theorem ediv_nonneg {a b : Int} (Ha : 0 ≤ a) (Hb : 0 ≤ b) : 0 ≤ a / b :=
match a, b, eq_ofNat_of_zero_le Ha, eq_ofNat_of_zero_le Hb with
| _, _, ⟨_, rfl⟩, ⟨_, rfl⟩ => ofNat_zero_le _

theorem ediv_nonneg_of_nonpos_of_nonpos {a b : Int} (Ha : a ≤ 0) (Hb : b ≤ 0) : 0 ≤ a / b := by
match a, b with
| ofNat a, b =>
match Int.le_antisymm Ha (ofNat_zero_le a) with
| h1 =>
rw [h1, zero_ediv]
exact Int.le_refl 0
| a, ofNat b =>
match Int.le_antisymm Hb (ofNat_zero_le b) with
| h1 =>
rw [h1, Int.ediv_zero]
exact Int.le_refl 0
| negSucc a, negSucc b =>
rw [Int.div_def, ediv]
exact le_add_one (ediv_nonneg (ofNat_zero_le a) (Int.le_trans (ofNat_zero_le b) (le.intro 1 rfl)))

theorem ediv_nonpos {a b : Int} (Ha : 0 ≤ a) (Hb : b ≤ 0) : a / b ≤ 0 :=
Int.nonpos_of_neg_nonneg <| Int.ediv_neg .. ▸ Int.ediv_nonneg Ha (Int.neg_nonneg_of_nonpos Hb)

Expand Down

0 comments on commit b875627

Please sign in to comment.