Skip to content

Commit

Permalink
feat: compact congruence proofs for grind
Browse files Browse the repository at this point in the history
  • Loading branch information
leodemoura committed Dec 26, 2024
1 parent d67180a commit f7f97fd
Show file tree
Hide file tree
Showing 2 changed files with 73 additions and 0 deletions.
55 changes: 55 additions & 0 deletions src/Lean/Meta/Tactic/Grind/Proof.lean
Original file line number Diff line number Diff line change
Expand Up @@ -67,7 +67,36 @@ private def findCommon (lhs rhs : Expr) : GoalM Expr := do
it := target
unreachable!

/--
Returns `true` if we can construct a congruence proof for `lhs = rhs` using `congrArg`, `congrFun`, and `congr`.
`f` (`g`) is the function of the `lhs` (`rhs`) application. `numArgs` is the number of arguments.
-/
private partial def isCongrDefaultProofTarget (lhs rhs : Expr) (f g : Expr) (numArgs : Nat) : GoalM Bool := do
unless isSameExpr f g do return false
let info := (← getFunInfo f).paramInfo
let rec loop (lhs rhs : Expr) (i : Nat) : GoalM Bool := do
if lhs.isApp then
let a₁ := lhs.appArg!
let a₂ := rhs.appArg!
let i := i - 1
unless isSameExpr a₁ a₂ do
if h : i < info.size then
if info[i].hasFwdDeps then
-- Cannot use `congrArg` because there are forward dependencies
return false
else
return false -- Don't have information about argument
loop lhs.appFn! rhs.appFn! i
else
return true
loop lhs rhs numArgs

mutual
/--
Given `lhs` and `rhs` proof terms of the form `nestedProof p hp` and `nestedProof q hq`,
constructs a congruence proof for `HEq (nestedProof p hp) (nestedProof q hq)`.
`p` and `q` are in the same equivalence class.
-/
private partial def mkNestedProofCongr (lhs rhs : Expr) (heq : Bool) : GoalM Expr := do
let p := lhs.appFn!.appArg!
let hp := lhs.appArg!
Expand All @@ -76,13 +105,39 @@ mutual
let h := mkApp5 (mkConst ``Lean.Grind.nestedProof_congr) p q (← mkEqProofCore p q false) hp hq
mkEqOfHEqIfNeeded h heq

/--
Constructs a congruence proof for `lhs` and `rhs` using `congr`, `congrFun`, and `congrArg`.
This function assumes `isCongrDefaultProofTarget` returned `true`.
-/
private partial def mkCongrDefaultProof (lhs rhs : Expr) (heq : Bool) : GoalM Expr := do
let rec loop (lhs rhs : Expr) : GoalM (Option Expr) := do
if lhs.isApp then
let a₁ := lhs.appArg!
let a₂ := rhs.appArg!
if let some proof ← loop lhs.appFn! rhs.appFn! then
if isSameExpr a₁ a₂ then
mkCongrFun proof a₁
else
mkCongr proof (← mkEqProofCore a₁ a₂ false)
else if isSameExpr a₁ a₂ then
return none -- refl case
else
mkCongrArg lhs.appFn! (← mkEqProofCore a₁ a₂ false)
else
return none
let r := (← loop lhs rhs).get!
if heq then mkHEqOfEq r else return r

/-- Constructs a congruence proof for `lhs` and `rhs`. -/
private partial def mkCongrProof (lhs rhs : Expr) (heq : Bool) : GoalM Expr := do
let f := lhs.getAppFn
let g := rhs.getAppFn
let numArgs := lhs.getAppNumArgs
assert! rhs.getAppNumArgs == numArgs
if f.isConstOf ``Lean.Grind.nestedProof && g.isConstOf ``Lean.Grind.nestedProof && numArgs == 2 then
mkNestedProofCongr lhs rhs heq
else if (← isCongrDefaultProofTarget lhs rhs f g numArgs) then
mkCongrDefaultProof lhs rhs heq
else
let thm ← mkHCongrWithArity f numArgs
assert! thm.argKinds.size == numArgs
Expand Down
18 changes: 18 additions & 0 deletions tests/lean/run/grind_congr1.lean
Original file line number Diff line number Diff line change
Expand Up @@ -89,3 +89,21 @@ end Ex2
example (f g : (α : Type) → α → α) (a : α) (b : β) : (h₁ : α = β) → (h₂ : HEq a b) → (h₃ : f = g) → HEq (f α a) (g β b) := by
grind_test
sorry

set_option trace.grind.proof true in
set_option trace.grind.proof.detail true in
example (f : {α : Type} → α → Nat → Bool → Nat) (a b : Nat) : f a 0 true = v₁ → f b 0 true = v₂ → a = b → v₁ = v₂ := by
grind_test
sorry

set_option trace.grind.proof true in
set_option trace.grind.proof.detail true in
example (f : {α : Type} → α → Nat → Bool → Nat) (a b : Nat) : f a b x = v₁ → f a b y = v₂ → x = y → v₁ = v₂ := by
grind_test
sorry

set_option trace.grind.proof true in
set_option trace.grind.proof.detail true in
example (f : {α : Type} → α → Nat → Bool → Nat) (a b c : Nat) : f a b x = v₁ → f c b y = v₂ → a = c → x = y → v₁ = v₂ := by
grind_test
sorry

0 comments on commit f7f97fd

Please sign in to comment.