Skip to content

leaver2000/nzthermo

Repository files navigation

nzthermo

This work has been heavily inspired by the excellent work and code base that has been developed by the MetPy team. The concept of (N, Z) is simply to solve for N profiles of Z levels. So regardless of what what you data looks like, if it can be reshaped to (N, Z) then it can be used with this library. Where possible all iterations of N are run in parallel using OpenMP and Cython. Most of the root functions are written in C++ and wrapped with Cython for use in Python.

Where this code currently lacks in complete documentation it makes up for with the extensive and verbose usage of type annotations. For example, the parcel_profile function is defined as follows:

def parcel_profile(
    pressure: Pascal[np.ndarray[shape[Z], np.dtype[T]] | np.ndarray[shape[N, Z], np.dtype[T]]],
    temperature: Kelvin[np.ndarray[shape[N], np.dtype[np.floating[Any]]]],
    dewpoint: Kelvin[np.ndarray[shape[N], np.dtype[np.floating[Any]]]],
    /,
    *,
    step: float = ...,
    eps: float = ...,
    max_iters: int = ...,
) -> Kelvin[np.ndarray[shape[N, Z], np.dtype[T]]]: ...

Which make it quite clean that the pressure array is expected to be of shape (Z,) or (N, Z) and have the units of Pascal. The temperature and dewpoint arrays are expected to be of shape (N,) and have the units of Kelvin. The return value is expected to be of shape (N, Z) and have the units of Kelvin.

Getting Started

The C++ source code uses templates & concepts to support both double and float data types. This requires when building from source that -std=c++20 is available. If working from an older version of Ubuntu you can update the default c++ compiler as such.

sudo apt update -y
sudo apt install g++-10 -y
sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-10 60

The code can be installed into a virtual environment with the following commands.

python3.11 -m venv .venv
source .venv/bin/activate
pip install git+https://github.com/leaver2000/nzthermo@master

Notebooks

A few notebooks have been included in a separate repository that can be found here.

...

Development

There are some additional tools that useful for development. These can be installed with the requirements.dev.txt file.

pip install -r requirements.dev.txt
# dump the build directly into the src/ directory and generate the _version.py
pip install --no-deps --upgrade --target src/ .  
python setup.py build_ext --inplace
python setup.py clean --all build_ext --inplace

functions

Unless otherwise specified, units are assumed si units.

moist_lapse

The Cython implementation of the moist_lapse function supports pressure arrays of shape (N,) | (Z,) | (1, Z) | (N, Z). The temperature array is raveled to a 1D array of shape (N,). nan values are ignored in the calculation of the moist adiabatic lapse rate, this can be useful in masking out levels for a particular profile.

If reference_pressure is not provided and the pressure array is 2D, the reference pressure will be determined by finding the first non-nan value in each row.

>>> pressure = np.array([
    [1013.12, 1000, 975, 950, 925, 900, ...],
    [1013.93, 1000, 975, 950, 925, 900, ...],
    [np.nan, np.nan, 975, 950, 925, 900, ...]
]) * 100.0 # (N, Z) :: pressure profile
>>> reference_pressure = pressure[np.arange(len(pressure)), np.argmin(np.isnan(pressure), axis=1)]
>>> reference_pressure
array([101312., 101393.,  97500.  ])
import numpy as np
import metpy.calc as mpcalc
from metpy.units import units

import nzthermo as nzt
N = 1000
Z = 20

P = np.linspace(101325, 10000, Z)[np.newaxis, :] # (1, Z)
T = np.random.uniform(300, 200, N) # (N,)

ml = nzt.moist_lapse(P, T)
%timeit nzt.moist_lapse(P, T)
# 1.22 ms ± 142 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
P = P[0] * units.Pa
T = T * units.kelvin
ml_ = [mpcalc.moist_lapse(P, T[i]).m for i in range(N)]  # type: ignore
%timeit [mpcalc.moist_lapse(P, T[i]).m for i in range(1000)]
# 1.65 s ± 29.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
np.testing.assert_allclose(ml, ml_, rtol=1e-3)

lcl

P = np.random.uniform(101325, 10000, 1000) # (N,)
T = np.random.uniform(300, 200, 1000) # (N,)
Td = T - np.random.uniform(0, 10, 1000) # (N,)

lcl_p, lcl_t = nzt.lcl(P, T, Td) # ((N,), (N,))
%timeit nzt.lcl(P, T, Td)
# 1.4 ms ± 373 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
P *= units.Pa
T *= units.kelvin
Td *= units.kelvin
lcl_p_, lcl_t_ = (x.m for x in mpcalc.lcl(P, T, Td))  # type: ignore
%timeit mpcalc.lcl(P, T, Td)
# 1.57 s ± 7.18 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
np.testing.assert_allclose(lcl_p, lcl_p_, rtol=1e-3)
np.testing.assert_allclose(lcl_t, lcl_t_, rtol=1e-3)

wet_bulb_temperature

CAPE CIN

isobaric = xr.open_dataset(
    "hrrr.t00z.wrfprsf00.grib2",
    engine="cfgrib",
    backend_kwargs={"filter_by_keys": {"typeOfLevel": "isobaricInhPa"}},
)
surface = xr.open_dataset(
    "hrrr.t00z.wrfsfcf00.grib2",
    engine="cfgrib",
    backend_kwargs={"filter_by_keys": {"typeOfLevel": "surface", "stepType": "instant"}},
)
T = isobaric["t"].to_numpy()  # (K) (Z, Y, X)
Z, Y, X = T.shape
N = Y * X
T = T.reshape(Z, N).transpose()  # (N, Z)

P = isobaric["isobaricInhPa"].to_numpy().astype(np.float32) * 100.0  # (Pa)
Q = isobaric["q"].to_numpy()  # (kg/kg) (Z, Y, X)
Q = Q.reshape(Z, N).transpose()  # (N, Z)

Td = nzt.dewpoint_from_specific_humidity(P[np.newaxis], Q)

prof = nzt.parcel_profile(P, T[:, 0], Td[:, 0])

CAPE, CIN = nzt.cape_cin(P, T, Td, prof)

CAPE = CAPE.reshape(Y, X)
CIN = CIN.reshape(Y, X)


lat = isobaric["latitude"].to_numpy()
lon = isobaric["longitude"].to_numpy()
lon = (lon + 180) % 360 - 180
timestamp = datetime.datetime.fromisoformat(isobaric["time"].to_numpy().astype(str).item())

fig, axes = plt.subplots(2, 2, figsize=(24, 12), subplot_kw={"projection": ccrs.PlateCarree()})
fig.suptitle(f"{timestamp:%Y-%m-%dT%H:%M:%SZ} | shape {Z, Y, X} | size {Z*Y*X:,}", fontsize=16, y=0.9)

# I suspect that the difference between our cape calculations and the MRMS cape calculations is due
# to the fact we are not actually starting at the surface or accounting for surface elevation.
# leading to inflated cape values in areas of higher elevation.
cape = np.where(CAPE < 8000, CAPE, 8000)
cin = np.where(CIN > -1400, CIN, -1400)

for ax, data, title, cmap in zip(
    axes[0], [cape, cin], ["NZTHERMO CAPE", "NZTHERMO CIN"], ["inferno", "inferno_r"]
):
    ax.coastlines(color="white", linewidth=0.25)
    ax.set_title(title, fontsize=16)
    ax.set_global()
    ax.set_extent([lon.min(), lon.max(), lat.min(), lat.max()])
    cf = ax.contourf(lon, lat, data, transform=ccrs.PlateCarree(), cmap=cmap)
    plt.colorbar(cf, ax=ax, orientation="vertical", pad=0.05, label="J/kg", shrink=0.75)

MRMS_CAPE = surface["cape"].to_numpy()
MRMS_CIN = surface["cin"].to_numpy()
for ax, data, title, cmap in zip(
    axes[1], [MRMS_CAPE, MRMS_CIN], ["MRMS CAPE", "MRMS CIN"], ["inferno", "inferno_r"]
):
    ax.coastlines(color="white", linewidth=0.25)
    ax.set_title(title, fontsize=16)
    ax.set_global()
    ax.set_extent([lon.min(), lon.max(), lat.min(), lat.max()])
    cf = ax.contourf(lon, lat, data, transform=ccrs.PlateCarree(), cmap=cmap)
    plt.colorbar(cf, ax=ax, orientation="vertical", pad=0.05, label="J/kg", shrink=0.75)

CAPE_CIN

dcape

import numpy as np
import nzthermo as nzt
pressure = np.array(
    [1013, 1000, 975, 950, 925, 900, 875, 850, 825, 800, 775, 750, 725, 700, 650, 600, 550, 500, 450, 400, 350, 300],
) # (Z,)
pressure *= 100
temperature = np.array( 
    [
        [243, 242, 241, 240, 239, 237, 236, 235, 233, 232, 231, 229, 228, 226, 235, 236, 234, 231, 226, 221, 217, 211],
        [250, 249, 248, 247, 246, 244, 243, 242, 240, 239, 238, 236, 235, 233, 240, 239, 236, 232, 227, 223, 217, 211],
        [293, 292, 290, 288, 287, 285, 284, 282, 281, 279, 279, 280, 279, 278, 275, 270, 268, 264, 260, 254, 246, 237],
        [300, 299, 297, 295, 293, 291, 292, 291, 291, 289, 288, 286, 285, 285, 281, 278, 273, 268, 264, 258, 251, 242],
    ]
) # (N, Z)
dewpoint = np.array(
    [
        [224, 224, 224, 224, 224, 223, 223, 223, 223, 222, 222, 222, 221, 221, 233, 233, 231, 228, 223, 218, 213, 207],
        [233, 233, 232, 232, 232, 232, 231, 231, 231, 231, 230, 230, 230, 229, 237, 236, 233, 229, 223, 219, 213, 207],
        [288, 288, 287, 286, 281, 280, 279, 277, 276, 275, 270, 258, 244, 247, 243, 254, 262, 248, 229, 232, 229, 224],
        [294, 294, 293, 292, 291, 289, 285, 282, 280, 280, 281, 281, 278, 274, 273, 269, 259, 246, 240, 241, 226, 219],
    ]
) # (N, Z)
nzt.downdraft_cape(pressure, temperature, dewpoint) #(N,)
import gcsfs
import numpy as np
import xarray as xr
import matplotlib.pyplot as plt

import nzthermo as nzt

# configure matplotlib
plt.rcParams["figure.figsize"] = (12, 8)
plt.rcParams["xtick.bottom"] = False
plt.rcParams["ytick.left"] = False
plt.rcParams["xtick.labelbottom"] = False
plt.rcParams["ytick.labelleft"] = False

# google cloud storage for access of large datasets
fs = gcsfs.GCSFileSystem(token="anon")
mapper = fs.get_mapper("gs://weatherbench2/datasets/era5/1959-2023_01_10-wb13-6h-1440x721_with_derived_variables.zarr")
ds = xr.open_zarr(mapper)

pressure = ds.coords["level"].to_numpy().astype(np.float32) * 100.0  # (hPa -> Pa) (13,)
temperature = ds["temperature"].isel(time=slice(0, 30)).to_numpy().astype(np.float32)  # (K) (30, 13, 721, 1440)
specific_humidity = ds["specific_humidity"].isel(time=slice(0, 30)).to_numpy().astype(np.float32) # (kg/kg) (30, 13, 721, 1440)

# - weatherbench's levels are in reverse order
# - non vertical dimensions are flattened like (T, Z, Y, X) -> (T*Y*X, Z) || (N, Z)
P = pressure[::-1]
Z = len(P)
T = np.moveaxis(temperature[:, ::-1, :, :], 1, -1).reshape(-1, Z)  # (N, Z)
Td = nzt.dewpoint_from_specific_humidity(
    P[np.newaxis, :],
    np.moveaxis(specific_humidity[:, ::-1, :, :], 1, -1).reshape(-1, Z),
)  # (K) (N, Z)
dcape = nzt.downdraft_cape(P, T, Td)  # (N,)
dcape = dcape.reshape((temperature.shape[0],) + temperature.shape[2:])  # (T, Y, X)
fig, axes = plt.subplots(dcape.shape[0] // 3, 3, figsize=(10, 20))
axes = axes.flatten()
for i, ax in enumerate(axes):
    ax.imshow(dcape[i], cmap="viridis")

DCAPE

Testing

pytest tests

Coverage

In order to compile the cython code for test coverage the code must be compiled with the --coverage flag. This will enable the appropriate compiler flags and macros that allow for code coverage. This also disables openmp which will cause the code to run significantly slower. Unit test can be run without the --coverage flag but the coverage report will not be accurate.

python setup.py clean --all build_ext --inplace --coverage
coverage run -m pytest
coverage report -m

Name                     Stmts   Miss  Cover   Missing
------------------------------------------------------
nzthermo/__init__.py         3      0   100%
nzthermo/_c.pyx            112      7    94%   93-95, 196, 203, 222, 234
nzthermo/_typing.py         11      0   100%
nzthermo/const.py           32      0   100%
nzthermo/core.py           192     56    71%   61, 96, 141-142, 270, 283, 300-346, 387-417, 440-441, 458
nzthermo/functional.py     151     39    74%   31, 35, 38-39, 118-119, 132, 144-170, 182-189, 243, 275, 308, 310
------------------------------------------------------
TOTAL                      501    102    80%

About

2d (N, Z) Atmospheric thermodynamic functions

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published