Generate comprehensive onboarding documentation for any repository using hybrid AI
Quick Start β’ Features β’ Web UI β’ CLI β’ Agent Skill β’ Copilot Chat β’ Contributing
Generate comprehensive onboarding documentation for any repository using a hybrid AI approach:
- Foundry Local for privacy-sensitive local inference (no data leaves your machine)
- Microsoft Foundry for cloud-hosted models with higher quality and faster inference
- GitHub Copilot SDK (
@github/copilot-sdk) for agentic workflows via the Copilot CLI - Agent Skills for reusable, teachable AI behaviors
# One-command setup (checks Node.js, Git, installs deps, verifies TypeScript, configures .env)
npm run setup
# Or on Windows directly: .\setup.ps1
# Or on Linux/macOS: chmod +x setup.sh && ./setup.shOnce setup completes, pick a mode:
# Run with Foundry Local (privacy-preserving)
npm run onboard -- https://github.com/Azure-Samples/chat-with-your-data-solution-accelerator
# Run with Microsoft Foundry (cloud higher quality)
npm run onboard -- https://github.com/Azure-Samples/chat-with-your-data-solution-accelerator \
--cloud-endpoint https://your-resource.cognitiveservices.azure.com/openai/deployments/ \
--cloud-api-key YOUR_API_KEY \
--cloud-model gpt-4o-mini
# Run with GitHub Copilot SDK (requires Copilot CLI)
npm run onboard -- https://github.com/Azure-Samples/chat-with-your-data-solution-accelerator \
--copilot-sdk --copilot-model claude-sonnet-4| File | Purpose |
|---|---|
ONBOARDING.md |
Architecture overview, key flows, dependency map, instructor section with learning outcomes and session plan |
RUNBOOK.md |
Build, run, test commands + troubleshooting |
TASKS.md |
10 starter tasks with acceptance criteria, hints, and learning objectives per task |
AGENTS.md |
Agent skills, MCP servers, workflows (incl. code-review), and GitHub Copilot usage guide |
VALIDATION.md |
Microsoft Learn validation queries & checklist (when MS tech detected) |
diagram.mmd |
Mermaid component diagram |
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β Interfaces β
β ββββββββββββββββββββββββ ββββββββββββββββββββββββ β
β β CLI (index.ts) β β Web UI (server.ts) β β
β β Commander parsing β β HTTP + SSE progress β β
β ββββββββββββ¬ββββββββββββ ββββββββββββ¬ββββββββββββ β
β ββββββββββββββ¬βββββββββββββββ β
β βΌ β
β ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ β
β β Orchestrator (orchestrator.ts) β β
β β 9-step pipeline Β· tool-calling pattern Β· progress CBβ β
β βββββββββ¬βββββββββββββββ¬ββββββββββββββββ¬ββββββββββββββββ€ β
β β βΌ βΌ βΌ β β
β β RepoScanner LocalModelClient CopilotSdkClient β β
β β (repoScanner (localModelClient (copilotSdkClient β β
β β .ts) .ts) .ts) β β
β β Β· Languages Β· Foundry Local Β· @github/copilot β β
β β Β· Build sys Β· Azure Foundry -sdk (v0.1.23) β β
β β Β· Deps Β· OpenAI-compat Β· BYOK providers β β
β β Β· Structure Β· File summary Β· Session mgmt β β
β βββββββββ΄βββββββββββββββ΄ββββββββββββββββ΄ββββββββββββββββ β
β β
β Shared: types.ts (interfaces) Β· validation.ts (input safety) β
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β
βββββββββββββββββΌββββββββββββββββ
βΌ βΌ βΌ
Foundry Local Microsoft Foundry Copilot CLI
localhost:PORT *.cognitiveservices JSON-RPC
(on-device GPU) .azure.com (cloud) (GitHub auth)
The project has 8 source files in src/:
| File | Role |
|---|---|
index.ts |
CLI entry point Commander argument parsing |
server.ts |
Web UI HTTP server with SSE progress streaming |
orchestrator.ts |
9-step generation pipeline with tool-calling pattern |
localModelClient.ts |
LLM client for Foundry Local and Microsoft Foundry (OpenAI-compatible) |
copilotSdkClient.ts |
LLM client for GitHub Copilot SDK (@github/copilot-sdk) |
repoScanner.ts |
Repository analysis languages, deps, build systems, structure |
types.ts |
Shared TypeScript interfaces |
validation.ts |
Input validation and security checks |
This tool supports three inference backends use whichever fits your needs:
All processing stays on your machine:
- File summarization: Analyze source code content locally
- Config pattern extraction: Identify configuration without exposing secrets
- Dependency inventory: Generate descriptions for packages
- Architecture inference: Determine patterns from structure
Install:
winget install Microsoft.FoundryLocalsee Starting Foundry Local
Higher-quality output using cloud-hosted models:
- Larger models: Access GPT-4o, Phi-4, DeepSeek-R1, and more
- Faster inference: No GPU required on your machine
- Same workflow: Identical 9-step pipeline, just a different backend
- OpenAI-compatible: Works with any Microsoft Foundry deployment
Get started at ai.azure.com see Cloud Usage
Agentic workflows using the official @github/copilot-sdk:
- Session-based: Stateful conversations with plan/execute capabilities
- BYOK support: Connect to Foundry Local, Azure OpenAI, or other OpenAI-compatible endpoints
- Tool-calling: Define custom tools the agent can invoke during generation
- Multiple models: Access GPT-4o, Claude Sonnet, and more via GitHub Copilot
Requires:
npm install -g @github/copilotsee Copilot SDK Usage
Orchestration and coordination (same for both backends):
- Workflow planning: Sequence the analysis steps
- File operations: Write generated documentation
- Command execution: Run build/test verification
- Cross-file analysis: Understand relationships
This project uses the official @github/copilot-sdk (v0.1.23) for agentic AI workflows. The SDK communicates with the Copilot CLI via JSON-RPC, providing session management, tool-calling, and BYOK (Bring Your Own Key) support.
The orchestrator (src/orchestrator.ts) implements the Copilot Extensions tool-calling pattern each capability is defined as a discrete tool with a name, description, typed parameters, and an async handler:
// OrchestratorTool interface mirrors the Copilot Extensions tool schema
interface OrchestratorTool {
name: string;
description: string;
parameters: Record<string, ToolParameter>;
handler: (params: Record<string, unknown>) => Promise<unknown>;
}Seven tools are registered for the orchestration session:
| Tool | Purpose |
|---|---|
scanRepo |
Scan repository structure, languages, and dependencies |
localSummarize |
Summarize a file using the local/cloud model |
localAnalyzeArchitecture |
Generate architecture overview from key files |
localGenerateTasks |
Create starter tasks for new contributors |
localGenerateDiagram |
Generate a Mermaid component diagram |
writeDoc |
Write a documentation file to the output directory |
runCommand |
Execute a shell command in the repository context |
This mirrors how Copilot Extensions expose capabilities to the LLM each tool is self-describing and independently invocable, enabling the agent to compose multi-step workflows.
The project ships as a set of GitHub Copilot Agent Skills in .github/skills/. Each skill follows the Copilot custom instructions format with YAML frontmatter and trigger phrases:
---
name: repo-onboarding-pack
description: Generate comprehensive engineering onboarding documentation...
compatibility: Works with any Git repository...
---Skills are activated by natural-language trigger phrases (e.g., "Create onboarding pack for this repo") and include quality gates, prompt templates, and validation checklists so Copilot can autonomously generate and verify output.
The 9-step generation pipeline runs as a Copilot SDK-style session a stateful sequence of tool invocations with progress tracking, error recovery, and structured output:
- Check inference endpoint β 2. Scan repo β 3. Analyze files β 4. Architecture β 5. Tasks β 6. Diagram β 7. Compile β 8. Microsoft Learn validation β 9. Write files
Each step reports progress via a callback (ProgressCallback), enabling real-time UI updates in both the CLI and web interface.
The project includes .github/copilot-instructions.md which configures GitHub Copilot's behavior when working in this repository linking to skills, defining workflows, and setting up the Microsoft Learn MCP integration.
# Basic usage any GitHub URL or local path
npx onboard https://github.com/Azure-Samples/chat-with-your-data-solution-accelerator
# With options
npx onboard https://github.com/Azure-Samples/chat-with-your-data-solution-accelerator \
--output ./onboarding-docs \
--model phi-4 \
--verbose# Using Microsoft Foundry cloud models
npx onboard https://github.com/Azure-Samples/chat-with-your-data-solution-accelerator \
--cloud-endpoint https://your-project.services.ai.azure.com \
--cloud-api-key YOUR_API_KEY \
--cloud-model gpt-4o-mini \
--verbose
# Using environment variable for API key
export FOUNDRY_CLOUD_API_KEY=your-key-here
npx onboard https://github.com/Azure-Samples/chat-with-your-data-solution-accelerator \
--cloud-endpoint https://your-project.services.ai.azure.com \
--cloud-model gpt-4o# Use GitHub Copilot SDK (requires Copilot CLI: npm install -g @github/copilot)
npx onboard https://github.com/Azure-Samples/chat-with-your-data-solution-accelerator --copilot-sdk
# Specify a Copilot model
npx onboard https://github.com/Azure-Samples/chat-with-your-data-solution-accelerator \
--copilot-sdk --copilot-model gpt-4o# Check Foundry Local status
npx onboard --check-status
# Skip AI entirely (use fallback generation)
npx onboard https://github.com/Azure-Samples/chat-with-your-data-solution-accelerator --skip-localLaunch the graphical interface for a browser-based experience:
# Start the web server
npm run web
# Or with custom port
PORT=8080 npm run webThen open http://localhost:3000 in your browser.
| Key | Action |
|---|---|
R |
Refresh Foundry status |
Esc |
Close preview modal |
Ctrl+C |
Copy file content (in modal) |
Home Foundry Local provider with model selection and live status:
Cloud provider Microsoft Foundry with endpoint, model, and API key status:
Form filled ready to generate onboarding docs for a GitHub repository:
Step-by-step progress real-time tracking of the 9-step generation pipeline:
Generation complete all steps done with generated files listed for preview/download:
Web UI Features:
- π Real-time Foundry Local connection status with model details
- βοΈ Microsoft Foundry cloud support with provider toggle
- π Support for local paths and GitHub URLs
- π Recent repositories dropdown (stored locally)
- π Step-by-step progress tracking with per-step details and cancel support
- ποΈ Preview generated files with syntax highlighting
- π Copy to clipboard and download buttons
- β¨οΈ Keyboard shortcuts (Esc to close, R to refresh)
- βΏ Full accessibility support (ARIA labels, focus management)
- π Automatic dark mode support
| Flag | Description | Default |
|---|---|---|
-o, --output <dir> |
Output directory | ./docs in repo |
-e, --endpoint <url> |
Foundry Local endpoint | Auto-detected |
-m, --model <name> |
Local model to use | phi-4 |
-v, --verbose |
Show detailed progress | false |
--skip-local |
Skip AI calls (use fallback) | false |
--check-status |
Check Foundry status and exit | - |
--cloud-endpoint <url> |
Microsoft Foundry endpoint URL | - |
--cloud-api-key <key> |
Cloud API key | $FOUNDRY_CLOUD_API_KEY |
--cloud-model <name> |
Cloud model deployment name | gpt-4o-mini |
--copilot-sdk |
Use GitHub Copilot SDK for inference | false |
--copilot-model <name> |
Copilot SDK model name | claude-sonnet-4 |
All demo output lives in docs/demos/ and was generated from a single repository: Azure-Samples/chat-with-your-data-solution-accelerator a popular RAG pattern accelerator with 1.2k+ stars, Python backend, TypeScript frontend, Bicep infrastructure, and 34+ contributors.
We ran the generator four times against this repository once per provider/interface combination to compare output quality, size, and content.
| Folder | Interface | Provider | Model | Command |
|---|---|---|---|---|
docscli-local/ |
CLI | Foundry Local | qwen2.5-coder-1.5b | npx tsx src/index.ts <url> --output docs/demos/docscli-local |
docsweblocal/ |
Web UI | Foundry Local | qwen2.5-coder-1.5b | Web UI β Foundry Local provider |
docswebcloud/ |
Web UI | Microsoft Foundry | gpt-5.2 | Web UI β Cloud provider |
docswebgithub/ |
Web UI | GitHub Copilot SDK | Copilot model | Web UI β Copilot SDK provider |
File sizes in bytes larger LLM-generated files generally indicate richer, more detailed content.
| File | CLI + Local | Web + Local | Web + Cloud (gpt-5.2) | Web + Copilot SDK |
|---|---|---|---|---|
| ONBOARDING.md | 3,937 | 3,937 | 6,020 | 6,874 |
| RUNBOOK.md | 2,358 | 2,358 | 2,358 | 2,358 |
| TASKS.md | 8,158 | 8,158 | 10,078 | 9,714 |
| AGENTS.md | 2,323 | 2,323 | 2,323 | 2,323 |
| diagram.mmd | 285 | 285 | 733 | 1,393 |
| VALIDATION.md | 2,549 | 2,549 | 2,549 | 2,549 |
| Total (bytes) | 19,610 | 19,610 | 24,061 | 25,211 |
| File | What it tells you |
|---|---|
| ONBOARDING.md | Architecture depth how well the LLM understands the repo's structure, components, and key flows |
| RUNBOOK.md | Build/run/test commands deterministic (not LLM-generated), so identical across providers |
| TASKS.md | Starter-task quality repo-specific acceptance criteria, hints, and learning objectives |
| AGENTS.md | Agent config deterministic skills, MCP servers, and workflows extracted from repo metadata |
| diagram.mmd | Diagram complexity number of Mermaid nodes, subgraphs, and labeled edges |
| VALIDATION.md | Microsoft Learn queries deterministic, generated from detected Microsoft technologies |
Key insight: AGENTS.md, RUNBOOK.md, and VALIDATION.md are identical across all providers they are generated deterministically from repo metadata, not by the LLM. The LLM-generated files (ONBOARDING.md, TASKS.md, diagram.mmd) show the real quality differences. Cloud and Copilot SDK produce 23β29% more content than the local 1.5B model.
Each provider identified the same repo differently:
| Dimension | Foundry Local (1.5B) | Microsoft Foundry (gpt-5.2) | GitHub Copilot SDK |
|---|---|---|---|
| Pattern detected | "Monolithic" | "Monorepo" | "Serverless" |
| Component count | 5 (generic names) | 10 (directory-mapped table) | 14 (directory-mapped table with purpose) |
| Key interactions | 3 bullet points, generic | 3 numbered items with exact file paths | Detailed multi-tier description with orchestration strategies |
| Architecture depth | High-level only | Component table with subgraphs | Full multi-tier breakdown: UI layer, processing layer, infra, data |
Verbatim Foundry Local classified the architecture as:
"The project is structured as a monolithic application, where all components are tightly coupled and reside in a single codebase."
Verbatim Microsoft Foundry identified it as a monorepo:
"This project is a single repository that contains multiple deployable parts: a Python backend (including an Azure Functions batch/ingestion workload and an admin UI), a separate TypeScript/Vite frontend web app, and an optional Microsoft Teams extension."
Verbatim GitHub Copilot SDK went deepest:
"This is an Azure-native RAG (Retrieval Augmented Generation) solution accelerator using a serverless architecture. The system enables conversational search over user documents by combining Azure OpenAI for LLM capabilities with Azure AI Search for vector retrieval."
| Provider | Nodes | Subgraphs | Edge Labels | Size |
|---|---|---|---|---|
| Foundry Local | 10 | 0 | No | 285 B |
| Microsoft Foundry | 12 | 3 | No | 733 B |
| GitHub Copilot SDK | 14 | 5 | Yes | 1,393 B |
Verbatim Foundry Local produced a flat graph with raw directory/language names:
graph TD
code --> data
code --> scripts
Python --> tests
TypeScript --> tests
Bicep --> tests
Verbatim Microsoft Foundry added meaningful subgraphs:
graph TD
subgraph DevelopmentEnvironment[Development Environment]
DevContainerDir --> DockerDir
DevContainerDir --> ExtensionsDir
end
subgraph ApplicationAndData[Application & Data]
CodeDir --> DataDir
TestsDir --> CodeDir
end
Verbatim GitHub Copilot SDK produced the richest diagram with labeled edges and component-level detail:
graph TD
subgraph UserInterface["User Interface Layer"]
Frontend["code/frontend<br/>React Chat UI"]
Admin["code/backend<br/>Streamlit Admin"]
Teams["extensions/teams<br/>Teams Bot"]
end
Frontend -->|API Calls| Flask
Admin -->|Ingestion| Batch
Teams -->|Bot Framework| Flask
Every provider generated 10 tasks with learning objectives. The depth difference is dramatic:
Verbatim Foundry Local tasks are generic templates:
π‘ Task 1: Review Code Structure
Learning: Understand file organization and directory structure
Criteria: "Know the location of theapi,database, andorchestratordirectories"
Note: The local model also produced parsing artifacts field labels bled into content (e.g., Skills: File navigation appearing inside related-files lists).
Verbatim Microsoft Foundry tasks reference exact files and real workflows:
π’ Task 1: Trace the Chat Request Path (Frontend β Backend)
Learning: Code navigation in a monorepo; understanding API boundaries between TypeScript frontend and Python backend
Criteria: "Identifies the exact frontend function(s) that issue the chat request"
Hints: "Search for the chat endpoint path incode/frontend/src/api/*"
Verbatim GitHub Copilot SDK tasks tie to real engineering concepts:
π’ Task 1: Explore the RAG Architecture Documentation
Learning: Understanding RAG (Retrieval Augmented Generation) patterns and Azure service integration
Criteria: "Can explain the role of Azure OpenAI and Azure AI Search"
Related files:README.md,docs/integrated_vectorization.md,docs/conversation_flow_options.md
| Difficulty | Foundry Local | Microsoft Foundry | GitHub Copilot SDK |
|---|---|---|---|
| π’ Easy | 5 | 3 | 3 |
| π‘ Medium | 3 | 4 | 4 |
| π΄ Hard | 2 | 3 | 3 |
Cloud and Copilot providers produced a more balanced difficulty curve with harder tasks that involve real cross-component work (e.g., "Refactor Backend App Initialization for Clearer Dependency Injection", "Extend Infrastructure with New Bicep Module").
| Dimension | Foundry Local (1.5B) | Microsoft Foundry (gpt-5.2) | GitHub Copilot SDK |
|---|---|---|---|
| Architecture accuracy | ββ | ββββ | βββββ |
| Task specificity | ββ | βββββ | βββββ |
| Learning objectives | βββ | ββββ | βββββ |
| Diagram quality | ββ | ββββ | βββββ |
| Parsing cleanliness | ββ | βββββ | βββββ |
| Privacy | β On-device | β Cloud | β Cloud |
| Cost | Free | Pay-per-token | Copilot subscription |
| GPU required | Yes (local) | No | No |
| Use Case | Recommended Provider |
|---|---|
| Proprietary code, air-gapped environments | Foundry Local no data leaves your machine |
| Best output quality, team documentation | Microsoft Foundry or GitHub Copilot SDK |
| Students with Copilot access, no API keys | GitHub Copilot SDK |
| Quick drafts to refine manually | Foundry Local (fastest setup, zero cost) |
| Classroom with mixed setups | Start with Foundry Local, upgrade output with cloud if allowed |
π Repo Onboarding Pack Generator v1.0.0
π₯ Cloning: https://github.com/Azure-Samples/chat-with-your-data-solution-accelerator
Using cached clone...
[1/9] Checking LLM provider...
β Foundry Local available at http://127.0.0.1:65503
Active model: qwen2.5-coder-1.5b-instruct-cuda-gpu:4
[2/9] Scanning repository...
β Found 6 languages Primary: Python
[3/9] Analyzing key files...
Summarized: README.md, package.json, Makefile, pyproject.toml
[4/9] Generating architecture overview...
[5/9] Generating starter tasks...
[6/9] Generating component diagram...
[7/9] Compiling onboarding pack...
[8/9] Validating Microsoft technologies...
Found: TypeScript, Bicep
[9/9] Writing output files...
β Onboarding pack generated successfully!
π¦ Generated: ONBOARDING.md, RUNBOOK.md, TASKS.md, AGENTS.md, diagram.mmd, VALIDATION.md
This project includes reusable agent skills at .github/skills/.
| Skill | Purpose |
|---|---|
repo-onboarding-pack |
Generate onboarding documentation for repositories |
microsoft-docs |
Query Microsoft documentation for concepts & tutorials |
microsoft-code-reference |
API lookups, code samples, error troubleshooting |
-
Copy all skills to your target repo:
cp -r .github/skills/* /path/to/repo/.github/skills/ -
The
repo-onboarding-packskill triggers on phrases like:- "Create onboarding pack for this repo"
- "Generate runbook for the project"
- "New engineer onboarding docs"
- "Help me understand this repo quickly"
.github/skills/
βββ repo-onboarding-pack/
β βββ SKILL.md # Main onboarding skill
β βββ references/
β βββ checklist.md # Quality verification
β βββ mermaid-patterns.md # Diagram templates
β βββ microsoft-tech-verification.md
βββ repo-agents-pack/
β βββ SKILL.md # AGENTS.md generation skill
βββ microsoft-skill-creator/
β βββ SKILL.md # Create skills for Microsoft tech
β βββ references/
β βββ skill-templates.md # SDK, Azure, Framework, API templates
βββ microsoft-docs/
β βββ SKILL.md # Microsoft documentation queries
βββ microsoft-code-reference/
βββ SKILL.md # API/SDK verification
This project ships with agent skills and MCP server configuration that work directly inside GitHub Copilot Chat in VS Code. No CLI or web UI needed just open the repo and start chatting.
-
Open this repo in VS Code
code learnskill-agent-foundrylocal -
Install dependencies
npm install
-
Enable Agent Mode In Copilot Chat, click the mode dropdown (top of chat panel) and select Agent. This lets Copilot use the skills, MCP tools, and terminal commands defined in this project.
-
MCP server auto-configures The
.mcp.jsonfile at the project root registers the Microsoft Learn MCP server automatically. VS Code picks this up when you open the workspace. You should seemicrosoft-learnlisted when you click the Tools icon (π§) in the chat panel.
Once in Agent Mode, type natural-language prompts in Copilot Chat. The skills in .github/skills/ are loaded via .github/copilot-instructions.md and activate based on your request:
Create onboarding pack for this repo
Generate runbook for the project
Help me understand this repo quickly
Create architecture documentation
Generate starter tasks for new contributors
Copilot will analyze the repo structure, call the LLM, and produce ONBOARDING.md, RUNBOOK.md, TASKS.md, AGENTS.md, diagram.mmd, and VALIDATION.md.
Generate AGENTS.md for this project
Configure Copilot skills for this repo
What MCP servers should this repo use?
Search Microsoft Learn for Azure Functions Python v2 triggers
Find the quickstart for Azure AI Search
What are the limits for Cosmos DB?
These queries use the microsoft_docs_search and microsoft_docs_fetch tools from the Microsoft Learn MCP server.
Find a code sample for uploading blobs with managed identity in Python
What's the correct signature for BlobClient.UploadAsync?
Show me how to use Semantic Kernel in C#
Create a skill for Azure Container Apps
Build an agent skill that teaches about Bicep
When you type a prompt in Copilot Chat (Agent Mode):
- Copilot reads
.github/copilot-instructions.mdthis tells it about the project, available skills, and MCP tools - Skills activate based on your prompt each skill in
.github/skills/has trigger phrases and step-by-step instructions Copilot follows - MCP tools fire when Copilot needs external data e.g.,
microsoft_docs_searchqueries learn.microsoft.com in real-time - Copilot uses the terminal to run commands like
npx tsx src/index.tsornpm run buildwhen the skill requires it - Files are created/edited directly in your workspace you can review changes in the source control panel
- Be specific "Create onboarding pack for
https://github.com/Azure-Samples/chat-with-your-data-solution-accelerator" works better than "make docs" - Check the Tools icon (π§) in Chat to verify
microsoft-learnMCP server is connected - Use Agent Mode, not Ask or Edit mode skills and MCP tools only work in Agent Mode
- Review generated files before committing AI output should always be verified
- Combine skills ask Copilot to generate an onboarding pack and then validate it against Microsoft Learn in the same conversation
This project integrates with the Microsoft Learn MCP Server for verifying Microsoft technology details.
VS Code (one-click):
Manual Configuration (.mcp.json):
This project includes a .mcp.json file that auto-configures the MCP server:
{
"mcpServers": {
"microsoft-learn": {
"type": "http",
"url": "https://learn.microsoft.com/api/mcp"
}
}
}| Tool | Use For |
|---|---|
microsoft_docs_search |
Search official documentation |
microsoft_docs_fetch |
Get full page content |
microsoft_code_sample_search |
Find code examples |
# Search for Azure Functions documentation
microsoft_docs_search(query="azure functions triggers bindings")
# Get full tutorial content
microsoft_docs_fetch(url="https://learn.microsoft.com/azure/azure-functions/...")
# Find code samples in specific language
microsoft_code_sample_search(query="semantic kernel", language="csharp")
See microsoft-tech-verification.md for detailed guidance.
- Node.js 20+
- Foundry Local (for local inference), Microsoft Foundry (for cloud), or GitHub Copilot CLI (for SDK mode)
Use the automated setup script to verify prerequisites, install dependencies, and configure your environment:
# Windows (PowerShell)
.\setup.ps1
# Linux / macOS
chmod +x setup.sh && ./setup.sh
# Or via npm (auto-detects OS)
npm run setupThe setup script checks Node.js 20+, Git, installs npm packages, verifies TypeScript compilation, creates .env from .env.example, checks Foundry Local status, and validates cloud configuration.
Alternatively, set up manually:
# Clone
git clone <repo-url>
cd repo-onboarding-pack
# Install
npm install
# Build
npm run build
# Run in dev mode
npm run dev -- --help# Install Foundry Local
winget install Microsoft.FoundryLocal
# Start the server
foundry service start
# Check status (shows dynamic port)
foundry service status
# Verify API (port is auto-discovered)
curl http://127.0.0.1:<port>/v1/modelsNote: Foundry Local uses dynamic ports. This tool auto-discovers the port via
foundry service status. Model aliases (e.g.,phi-4) are automatically resolved to full model IDs (e.g.,Phi-4-cuda-gpu:1).
- Go to ai.azure.com and create a project
- Deploy a model (e.g.,
gpt-4o-mini,Phi-4,DeepSeek-R1) - Copy the endpoint URL and API key from the deployment page
- Use them with the
--cloud-endpointand--cloud-api-keyflags:
npx onboard https://github.com/Azure-Samples/chat-with-your-data-solution-accelerator \
--cloud-endpoint https://your-project.services.ai.azure.com \
--cloud-api-key YOUR_KEY \
--cloud-model gpt-4o-miniAlternatively, set the API key as an environment variable:
# Windows
set FOUNDRY_CLOUD_API_KEY=your-key-here
# Linux/macOS
export FOUNDRY_CLOUD_API_KEY=your-key-heresrc/
βββ index.ts # CLI entry point
βββ server.ts # Web UI server
βββ orchestrator.ts # Workflow coordination
βββ localModelClient.ts # Foundry Local / Azure OpenAI client
βββ copilotSdkClient.ts # GitHub Copilot SDK client
βββ repoScanner.ts # Repository analysis
βββ validation.ts # Security input validation
βββ types.ts # TypeScript interfaces
# .env
# Foundry Local settings
FOUNDRY_LOCAL_ENDPOINT=http://localhost:5273
FOUNDRY_LOCAL_MODEL=phi-4
OUTPUT_DIR=./docs
# Microsoft Foundry cloud settings
FOUNDRY_CLOUD_ENDPOINT=https://your-resource.cognitiveservices.azure.com/openai/deployments/
FOUNDRY_CLOUD_API_KEY=your-api-key-here
FOUNDRY_CLOUD_MODEL=gpt-4o-mini
# GitHub Copilot SDK settings
GITHUB_TOKEN=your-github-token-here # or GH_TOKEN
COPILOT_MODEL=claude-sonnet-4Add to .github/copilot-instructions.md:
## Onboarding Documentation
When asked to create onboarding documentation:
1. Use the repo-onboarding-pack skill
2. Verify Microsoft tech details via Learn MCP tools
3. Follow the quality checklist before completingWe welcome contributions! See CONTRIBUTING.md for guidelines.
Check TASKS.md for example starter tasks generated by the tool.
Please report security vulnerabilities according to our Security Policy.
This project is licensed under the MIT License.






