Skip to content

leofansq/ROS_NDT_Localizer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

NDT Localizer

passing license

Demo.png

To run this project, you need the point cloud map.
Here is a project ROS_NDT_Mapping for the map generation :)

Environment

  • Ubuntu 18.04
  • ROS Melodic

Data

  • Point Cloud Map (.pcd format)
  • RosBag for offline testing

IO

  • input
    /points_raw (sensor_msgs::PointCloud2)
    /ndt_map (sensor_msgs::PointCloud2)
  • output
    /ndt_pose (geometry_msgs::PoseStamped)
    /odom (nav_msgs::Odometry)

    we generate a pseudo odom based on the movement.

How to use

  • Move the project into the ROS workspace (e.g. ~/ros_ws/src/)

  • Build the project in the ROS workspace

    cd ros_ws/
    catkin_make
  • Setup the configuration

    • Map Path: Move the map file (.pcd) into the map folder, and setup the pcd_path in map_loader.launch.

      <!-- line 16 -->
      <arg name="pcd_path"  default="$(find ndt_localizer)/map/map.pcd"/> 
    • Downsample Rate: Setup the downsample rate in points_downsample.launch.

      <!-- line 6 -->
      <arg name="leaf_size" default="1.0" />

      Note: For the sparse LIDAR data (e.g. VLP-16), the recommend downsample rate is 1.0, while that for the dense LIDAR data (e.g. OUSTER-64) is 2.5.

    • Static TF: Setup the static transformation base_link_to_localizer and world_to_map in static_tf.launch.

      <node pkg="tf2_ros" type="static_transform_publisher" name="localizer_to_base_link" args="0 0 0 0 0 0 base_link velodyne"/>
      <node pkg="tf2_ros" type="static_transform_publisher" name="world_to_map" args="0 0 0 0 0 0 map world" />
    • NDT Parameters: Setup the parameters in ndt_localizer.launch

      <!-- line 20-24  -->
      <arg name="trans_epsilon" default="0.05" doc="The maximum difference between two consecutive transformations in order to consider convergence" />
      <arg name="step_size" default="0.1" doc="The Newton line search maximum step length" />
      <arg name="resolution" default="2.0" doc="The ND voxel grid resolution" />
      <arg name="max_iterations" default="30.0" doc="The number of iterations required to calculate alignment" />
      <arg name="converged_param_transform_probability" default="3.0" doc="The converged_param_transform_probability" />

      Note: The default parameters work well with 16 LIDAR.

  • Run the NDT-Localizer

    • Source the setup.bash

      cd ros_ws
      source devel/setup.bash
    • Launch the NDT-Localizer node

      roslaunch ndt_localizer ndt_localizer.launch

      Note: The loading of the map may takes few seconds, please wait until the point cloud map is ready.

  • Pose Initialization (Optional): You can give an initial pose with the 2D Pose Estimate (green arrow) in the RVIZ. The initial pose will be published to the topic /initialpose.

  • Play the rosbag for offline testing

    rosbag play offline_testing.bag
  • Subscribe the localization messages from the topic /ndt_pose.

    <!--  Demo  -->
    ---
    header: 
      seq: 1867
      stamp: 
        secs: 1566536121
        nsecs: 251423898
      frame_id: "map"
    pose: 
      position: 
        x: -94.8022766113
        y: 544.097351074
        z: 42.5747337341
      orientation: 
        x: 0.0243843578881
        y: 0.0533175268768
        z: -0.702325920272
        w: 0.709437048124
    ---

Acknowledgment

Part of the code refers to the open-sourced project Autoware

Related projects in pure ROS (Melodic)