Skip to content

leopold-gravier/json-model

 
 

Repository files navigation

JSON Model

JSON Model is a compact and intuitive JSON syntax to describe JSON data structures.

This reference implementation allows to generate code in Python, C, JavaScript, PL/pgSQL, Perl and Java for checking a JSON value against a JSON model, and to export models to JSON Schema or Pydantic.

It is dedicated to the Public Domain.

JMC Command

JSON Model optimizing compiler (jmc) can be installed as a Python package or a Docker image, see Installation HOWTO.

Command jmc options include:

  • main operations (default depends on other options, final guess is preprocess):
    • -P: preprocess model.
    • -C: compile to Python, C, JS, PL/pgSQL, Perl, Java.
    • -E: export to JSON Schema version draft 2020-12 or Pydantic.
  • -O: optimize model: constant propagation, partial evaluation, xor to or conversion, flattening… (this is the default, -nO to disable)
  • -o output: file output instead of standard

For instance, let's consider a JSON model in file person.model.json:

{
  "#": "A person with a birth date",
  "name": "/^[a-z]+$/i",
  "born": "$DATE"
}
  • to check directly sample JSON values against it (with the Python backend):

    jmc -r person.model.json hobbes.json oops.json
    hobbes.json: PASS
    oops.json: FAIL (.: not an expected object [.]; .: missing mandatory prop <born> [.])
    
  • to compile an executable for checking a model (with the C backend), and use it for validating values:

    jmc -o ./person.out person.model.json
    ./person.out -r hobbes.json oops.json
    hobbes.json: PASS
    oops.json: FAIL (.: not an expected object [.]; .: missing mandatory prop <born> [.])
    

    The generated executable allow to collect validation performance figures (average and standard deviation) over a loop, with or without reporting:

    ./person.out -r -T 100000 hobbes.json
    hobbes.json.[0] nop PASS 0.056 ± 0.423 µs/check (0.174)
    hobbes.json.[0] rep PASS 0.071 ± 0.443 µs/check (0.174)
    hobbes.json: PASS
    
  • to export this model as a JSON schema in the YaML format:

    jmc -E -F yaml person.model.json
    description: A person with a birth date
    type: object
    properties:
      name:
        type: string
        pattern: (?i)^[a-z]+$
      born:
        type: string
        format: date
    required:
    - name
    - born
    additionalProperties: false

JSON Model Python API

The package provides functions to create and check models from Python:

import json_model as jm

# direct model definition with 2 mandatory properties
person_model: jm.Jsonable = {
  "name": "/^[a-z]+$/i",
  "born": "$DATE"
}

# create a dynamically compiled checker function for the model
checker = jm.model_checker_from_json(person_model)

# check valid data
good_person = { "name": "Hobbes", "born": "2020-07-29" }
print(good_person, "->", checker(good_person))

# check invalid data
bad_person = { "name": "Oops" }
print(bad_person, "->", checker(bad_person))

# collect reasons
reasons: jm.Report = []
assert not checker(bad_person, "", reasons)
print("reasons:", reasons)

JSON Model Validation Performance

See the benchmark page for artifacts which compare various JSON Model Compiler runs (C, JS, Java, Python) with Sourcemeta Blaze CLI as a baseline using test cases from JSON Schema Benchmark. Overall, JMC-C implementation fares over 75% faster than Blaze C++. It comes ahead over 80% of the time on the latest benchmarks tests. Moreover, JMC-JS and JMC-Java/GSON native implementations are only 15-20% slower than Blaze C++, which given the intrinsic language capabilities is quite honorable.

More Information

See the JSON Model website, which among many resources, includes a tutorial for a hands-on overview of JSON Model, and links to research papers for explanations about the design.

JSON Model Distribution

About

JSON Model Tools

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C 24.1%
  • Java 21.1%
  • Python 17.4%
  • JavaScript 17.3%
  • PLpgSQL 10.7%
  • Perl 9.2%
  • Other 0.2%