Skip to content

Commit

Permalink
update optimtool
Browse files Browse the repository at this point in the history
  • Loading branch information
linjing-lab committed Oct 19, 2023
1 parent a58e885 commit 341c8fc
Show file tree
Hide file tree
Showing 7 changed files with 18 additions and 18 deletions.
6 changes: 3 additions & 3 deletions optimtool/constrain/equal.py
Original file line number Diff line number Diff line change
Expand Up @@ -103,9 +103,9 @@ def lagrange_augmentede(funcs: FuncArray,
:param draw: bool, use `bool` to control whether to draw visual images. default: bool=True.
:param output_f: bool, use `bool` to control whether to obtain iterative values of `funcs`. default: bool=False.
:param method: str, unconstrained kernel used to drive the operation of finding the point of intermediate function. default: str='newton'.
:param lamk: float, the initial value of the elements in the initial penalty vector. default: float=6.
:param sigma: float, penalty factor used to set the degree of convergence of `funcs`. default: float=10.
:param p: float, parameter to adjust the degree value of convergence named `sigma`. default: float=2.
:param lamk: float, the initial value of the elements in the initial penalty vector. default: float=6.0.
:param sigma: float, penalty factor used to set the degree of convergence of `funcs`. default: float=10.0.
:param p: float, parameter to adjust the degree value of convergence named `sigma`. default: float=2.0.
:param epak: float, used to set the precision to accelerate the completion of kernel. default: float=1e-4.
:param epsilon: float, used to set the precision of stopping the overall algorithm. default: float=1e-6.
:param k: int, iterative times is used to measure the difficulty of learning the `funcs` in the algorithm. default: int=0.
Expand Down
12 changes: 6 additions & 6 deletions optimtool/constrain/mixequal.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@ def penalty_quadraticm(funcs: FuncArray,
:param draw: bool, use `bool` to control whether to draw visual images. default: bool=True.
:param output_f: bool, use `bool` to control whether to obtain iterative values of `funcs`. default: bool=False.
:param method: str, unconstrained kernel used to drive the operation of finding the point of intermediate function. default: str='newton'.
:param sigma: float, penalty factor used to set the degree of convergence of `funcs`. default: float=10.
:param sigma: float, penalty factor used to set the degree of convergence of `funcs`. default: float=10.0.
:param p: float, parameter to adjust the degree value of convergence named `sigma`. default: float=0.6.
:param epsk: float, used to set the precision to accelerate the completion of kernel. default: float=1e-6.
:param epsilon: float, used to set the precision of stopping the overall algorithm. default: float=1e-10.
Expand Down Expand Up @@ -109,7 +109,7 @@ def penalty_L1(funcs: FuncArray,
:param draw: bool, use `bool` to control whether to draw visual images. default: bool=True.
:param output_f: bool, use `bool` to control whether to obtain iterative values of `funcs`. default: bool=False.
:param method: str, unconstrained kernel used to drive the operation of finding the point of intermediate function. default: str='newton'.
:param sigma: float, penalty factor used to set the degree of convergence of `funcs`. default: float=1.
:param sigma: float, penalty factor used to set the degree of convergence of `funcs`. default: float=1.0.
:param p: float, parameter to adjust the degree value of convergence named `sigma`. default: float=0.6.
:param epsk: float, used to set the precision to accelerate the completion of kernel. default: float=1e-6.
:param epsilon: float, used to set the precision of stopping the overall algorithm. default: float=1e-10.
Expand Down Expand Up @@ -174,12 +174,12 @@ def lagrange_augmentedm(funcs: FuncArray,
:param draw: bool, use `bool` to control whether to draw visual images. default: bool=True.
:param output_f: bool, use `bool` to control whether to obtain iterative values of `funcs`. default: bool=False.
:param method: str, unconstrained kernel used to drive the operation of finding the point of intermediate function. default: str='newton'.
:param lamk: float, constant used to adjust the weight of equation constraints. default: float=6.
:param muk: float, controlled parameter with unequality constrained sigma values. default: float=10.
:param sigma: float, penalty factor used to set the degree of convergence of `funcs`. default: float=8.
:param lamk: float, constant used to adjust the weight of equation constraints. default: float=6.0.
:param muk: float, controlled parameter with unequality constrained sigma values. default: float=10.0.
:param sigma: float, penalty factor used to set the degree of convergence of `funcs`. default: float=8.0.
:param alpha: float, value to adjust epsilonk combined with sigma value. default: float=0.5.
:param beta: float, value used in continue execution to adjust epsilonk. default: float=0.7.
:param p: float, value to adjust the degree value of convergence named `sigma`. default: float=2.
:param p: float, value to adjust the degree value of convergence named `sigma`. default: float=2.0.
:param etak: float, used to set the precision to measure the gradient of funcs. default: float=1e-3.
:param epsilon: float, used to set the precision of stopping the overall algorithm. default: float=1e-4.
:param k: int, iterative times is used to measure the difficulty of learning the `funcs` in the algorithm. default: int=0.
Expand Down
8 changes: 4 additions & 4 deletions optimtool/constrain/unequal.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,7 @@ def penalty_quadraticu(funcs: FuncArray,
:param draw: bool, use `bool` to control whether to draw visual images. default: bool=True.
:param output_f: bool, use `bool` to control whether to obtain iterative values of `funcs`. default: bool=False.
:param method: str, unconstrained kernel used to drive the operation of finding the point of intermediate function. default: str='newton'.
:param sigma: float, penalty factor used to set the degree of convergence of `funcs`. default: float=10.
:param sigma: float, penalty factor used to set the degree of convergence of `funcs`. default: float=10.0.
:param p: float, parameter to adjust the degree value of convergence named `sigma`. default: float=0.4.
:param epsk: float, used to set the precision to accelerate the completion of kernel. default: float=1e-4.
:param epsilon: float, used to set the precision of stopping the overall algorithm. default: float=1e-6.
Expand Down Expand Up @@ -108,11 +108,11 @@ def lagrange_augmentedu(funcs: FuncArray,
:param draw: bool, use `bool` to control whether to draw visual images. default: bool=True.
:param output_f: bool, use `bool` to control whether to obtain iterative values of `funcs`. default: bool=False.
:param method: str, unconstrained kernel used to drive the operation of finding the point of intermediate function. default: str='newton'.
:param muk: float, controlled parameter with unequality constrained sigma values. default: float=10.
:param sigma: float, penalty factor used to set the degree of convergence of `funcs`. default: float=8.
:param muk: float, controlled parameter with unequality constrained sigma values. default: float=10.0.
:param sigma: float, penalty factor used to set the degree of convergence of `funcs`. default: float=8.0.
:param alpha: float, value to adjust epsilonk combined with sigma value. default: float=0.2.
:param beta: float, value used in continue execution to adjust epsilonk. default: float=0.7.
:param p: float, parameter to adjust the degree value of convergence named `sigma`. default: float=2.
:param p: float, parameter to adjust the degree value of convergence named `sigma`. default: float=2.0.
:param eta: float, used to set the precision to measure the gradient of funcs. default: float=1e-1.
:param epsilon: float, used to set the precision of stopping the overall algorithm. default: float=1e-4.
:param k: int, iterative times is used to measure the difficulty of learning the `funcs` in the algorithm. default: int=0.
Expand Down
2 changes: 1 addition & 1 deletion optimtool/example/Lasso.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@ def gradient(A: NDArray,
:param verbose: bool, iteration point, function value, numbers of iteration after the k-th iteration. default: bool=False.
:param draw: bool, use `bool` to control whether to draw visual images. default: bool=True.
:param output_f: bool, use `bool` to control whether to obtain iterative values of `funcs`. default: bool=False.
:param delta: float, value used to adjust the constant influence of mu. default: float=10.
:param delta: float, value used to adjust the constant influence of mu. default: float=10.0.
:param alp: float, initial update step size acting on smooth gradient. default: float=1e-3.
:param epsilon: float, used to set the precision of stopping the overall algorithm. default: float=1e-2
:param k: int, iterative times is used to measure the difficulty of learning the `funcs` in the algorithm. default: int=0.
Expand Down
2 changes: 1 addition & 1 deletion optimtool/unconstrain/gradient_descent.py
Original file line number Diff line number Diff line change
Expand Up @@ -136,7 +136,7 @@ def barzilar_borwein(funcs: FuncArray,
:param beta: float, factor used to expand alpha for adapting to alphas interval. default: float=0.6
:param M: int, constant used to control the inner `max` process of `Grippo`. default: int=20.
:param eta: float, constant used to control `C_k` process of `ZhangHanger`. default: float=0.6.
:param alpha: float, initial step size for nonmonotonic line search method with assert `> 0`. default: float=1.
:param alpha: float, initial step size for nonmonotonic line search method with assert `> 0`. default: float=1.0.
:param epsilon: float, used to set the precision of stopping the overall algorithm. default: float=1e-10.
:param k: int, iterative times is used to measure the difficulty of learning the `funcs` in the algorithm. default: int=0.
Expand Down
2 changes: 1 addition & 1 deletion optimtool/unconstrain/nonlinear_least_square.py
Original file line number Diff line number Diff line change
Expand Up @@ -93,7 +93,7 @@ def levenberg_marquardt(funcr: FuncArray,
:param verbose: bool, iteration point, function value, numbers of iteration after the k-th iteration. default: bool=False.
:param draw: bool, use `bool` to control whether to draw visual images. default: bool=True.
:param output_f: bool, use `bool` to control whether to obtain iterative values of `funcr`. default: bool=False.
:param lamk: float, the initial factor acting on the product of first-order residual matrices. default: float=1.
:param lamk: float, the initial factor acting on the product of first-order residual matrices. default: float=1.0.
:param eta: float, threshold constraint required for controlling iteration point updates. default: float=0.2.
:param p1: float, threshold for controlling whether lamk is updated by gamma2. default: float=0.4.
:param p2: float, threshold for controlling whether lamk is updated by gamma1. default: float=0.9.
Expand Down
4 changes: 2 additions & 2 deletions optimtool/unconstrain/trust_region.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,8 +49,8 @@ def steihaug_CG(funcs: FuncArray,
:param verbose: bool, iteration point, function value, numbers of iteration after the k-th iteration. default: bool=False.
:param draw: bool, use `bool` to control whether to draw visual images. default: bool=True.
:param output_f: bool, use `bool` to control whether to obtain iterative values of `funcs`. default: bool=False.
:param r0: float, the initial radius of gradient search used to update iteration points. default: float=1.
:param rmax: float, the maximal radius of gradient search used to update iteration points. default: float=2.
:param r0: float, the initial radius of gradient search used to update iteration points. default: float=1.0.
:param rmax: float, the maximal radius of gradient search used to update iteration points. default: float=2.0.
:param eta: float, threshold constraint required for controlling iteration point updates. default: float=0.2.
:param p1: float, threshold for controlling whether r0 is updated by gamma1. default: float=0.4.
:param p2: float, threshold for controlling whether r0 is updated by gamma2. default: float=0.6.
Expand Down

0 comments on commit 341c8fc

Please sign in to comment.