Skip to content

local-ai-zone/local-ai-zone.github.io

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

20 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

GGUF Model Discovery

A professional, premium web application for discovering and browsing GGUF (GPT-Generated Unified Format) machine learning models. This platform provides an elegant interface to explore thousands of quantized AI models with detailed information, engagement metrics, and direct download links.

πŸš€ Features

Core Functionality

  • Model Discovery: Browse 5,000+ GGUF format AI models
  • Advanced Search: Real-time search with fuzzy matching
  • Smart Filtering: Filter by quantization type, model type, and license
  • Engagement Metrics: Like counts, download statistics, and popularity indicators
  • Responsive Design: Premium mobile-first responsive interface
  • Performance Optimized: Fast loading with efficient data handling

Premium UI/UX

  • Professional Design: Business-class styling with premium aesthetics
  • Interactive Elements: Smooth animations and hover effects
  • Accessibility: WCAG compliant with keyboard navigation support
  • Dark Mode: Automatic dark mode support based on user preferences
  • Mobile Optimized: Collapsible header and mobile-friendly interactions

Technical Features

  • SEO Optimized: Structured data, meta tags, and prerendering support
  • GitHub Integration: Automated workflows for data updates
  • Modular Architecture: Component-based JavaScript architecture
  • Performance Monitoring: Built-in analytics and performance tracking

πŸ—οΈ Architecture

Frontend Structure

β”œβ”€β”€ index.html              # Main application entry point
β”œβ”€β”€ css/
β”‚   β”œβ”€β”€ premium-styles.css  # Main premium styling
β”‚   └── *.css              # Component-specific styles
β”œβ”€β”€ js/
β”‚   β”œβ”€β”€ premium-app.js     # Main application controller
β”‚   β”œβ”€β”€ components/        # Reusable UI components
β”‚   β”œβ”€β”€ services/          # Data and business logic services
β”‚   β”œβ”€β”€ state/            # Application state management
β”‚   └── utils/            # Utility functions and helpers
└── scripts/              # Build and automation scripts

Data Flow

  1. Data Fetching: Python scripts fetch model data from Hugging Face
  2. Processing: Data is processed and enriched with engagement metrics
  3. Storage: JSON files store processed model information
  4. Rendering: JavaScript dynamically renders the UI
  5. Interaction: User interactions update filters and views

πŸ› οΈ Installation & Setup

Prerequisites

  • Node.js (v16 or higher)
  • Python 3.8+
  • Git

Quick Start

# Clone the repository
git clone https://github.com/local-ai-zone/local-ai-zone.github.io.git
cd gguf-model-discovery

# Install Python dependencies
pip install -r scripts/requirements.txt

# Start local development server
python -m http.server 8000

# Open in browser
open http://localhost:8000

Development Setup

# Install development dependencies
npm install

# Run data fetching script
python scripts/simplified_gguf_fetcher.py

# Start development server with live reload
npm run dev

πŸ“Š Data Management

Model Data Structure

{
  "modelName": "string",
  "description": "string",
  "quantization": "string",
  "fileSize": "number",
  "downloadCount": "number",
  "likeCount": "number",
  "license": "string",
  "modelType": "string",
  "downloadUrl": "string"
}

Data Sources

  • Primary: Hugging Face Hub API
  • Enrichment: Community engagement metrics
  • Updates: Automated daily refresh via GitHub Actions

🎨 Styling & Theming

Design System

  • Color Palette: Professional blue and neutral tones
  • Typography: Inter font family for modern readability
  • Spacing: Consistent 8px grid system
  • Components: Reusable design tokens and components

CSS Architecture

  • CSS Variables: Centralized theming system
  • BEM Methodology: Block-Element-Modifier naming convention
  • Responsive Design: Mobile-first approach with breakpoints
  • Performance: Optimized CSS with minimal unused styles

πŸ”§ Configuration

Environment Variables

# Optional: API rate limiting
HUGGINGFACE_TOKEN=your_token_here

# Optional: Analytics
ANALYTICS_ID=your_analytics_id

Build Configuration

  • Prerendering: Static page generation for SEO
  • Minification: CSS and JS optimization
  • Compression: Gzip compression for assets

πŸš€ Deployment

GitHub Pages (Recommended)

# Build for production
npm run build

# Deploy to GitHub Pages
npm run deploy

Manual Deployment

  1. Build the project: npm run build
  2. Upload dist/ folder to your web server
  3. Configure server for SPA routing (if needed)

πŸ§ͺ Testing

Test Structure

test-*.html           # Integration tests
verify-*.js          # Unit tests
*-test.html          # Component tests

Running Tests

# Run all tests
npm test

# Run specific test suite
npm run test:engagement
npm run test:filters
npm run test:mobile

πŸ“ˆ Performance

Optimization Features

  • Lazy Loading: Images and components loaded on demand
  • Virtual Scrolling: Efficient rendering of large model lists
  • Caching: Intelligent caching of API responses
  • Compression: Optimized asset delivery

Performance Metrics

  • First Contentful Paint: < 1.5s
  • Largest Contentful Paint: < 2.5s
  • Cumulative Layout Shift: < 0.1
  • First Input Delay: < 100ms

πŸ”’ Security & Privacy

Security Measures

  • Content Security Policy: Strict CSP headers
  • HTTPS Only: Secure connections required
  • Input Sanitization: XSS prevention
  • Rate Limiting: API abuse prevention

Privacy

  • No Personal Data: No user data collection
  • External Links: Clear disclaimer about third-party content
  • Transparency: Open source and auditable code

🀝 Contributing

Development Workflow

  1. Fork the repository
  2. Create a feature branch: git checkout -b feature/amazing-feature
  3. Make your changes and test thoroughly
  4. Commit with conventional commits: git commit -m "feat: add amazing feature"
  5. Push to your branch: git push origin feature/amazing-feature
  6. Open a Pull Request

Code Standards

  • JavaScript: ES6+ with modern syntax
  • CSS: BEM methodology with CSS variables
  • HTML: Semantic markup with accessibility
  • Testing: Comprehensive test coverage

πŸ“ License

This project is licensed under the MIT License - see the LICENSE file for details.

πŸ™ Acknowledgments

  • Hugging Face: For providing the model data and API
  • GGUF Loader: For inspiration and branding partnership
  • Community: For feedback and contributions
  • Built with Kiro: This project leverages Kiro for AI-assisted development, including code generation and workflow automation.

πŸ“ž Support


Disclaimer: GGUF Loader is not affiliated with Hugging Face. All links point to publicly available models hosted by their respective creators. We do not store or redistribute any model files directly.

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •