Skip to content

AgentMesh - The Secure Nervous System for Cloud-Native Agent Ecosystems. Identity, Trust, Reward, Governance for AI agents.

License

Notifications You must be signed in to change notification settings

loganionian/agent-mesh

Β 
Β 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

49 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

AgentMesh

The Secure Nervous System for Cloud-Native Agent Ecosystems

Identity Β· Trust Β· Reward Β· Governance

GitHub Stars Sponsor CI License Python Agent-OS Compatible

⭐ If this project helps you, please star it! It helps others discover AgentMesh.

πŸ”— Part of the Agent Ecosystem β€” Works seamlessly with Agent-OS for IATP trust protocol


Overview

AgentMesh is the first platform purpose-built for the Governed Agent Mesh β€” the cloud-native, multi-vendor network of AI agents that will define enterprise operations.

The protocols exist (A2A, MCP, IATP). The agents are shipping. The trust layer does not. AgentMesh fills that gap.

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                           AGENTMESH ARCHITECTURE                            β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  LAYER 4  β”‚  Reward & Learning Engine                                       β”‚
β”‚           β”‚  Per-agent trust scores Β· Multi-dimensional rewards Β· Adaptive  β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  LAYER 3  β”‚  Governance & Compliance Plane                                  β”‚
β”‚           β”‚  Policy engine Β· EU AI Act / SOC2 / HIPAA Β· Merkle audit logs   β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  LAYER 2  β”‚  Trust & Protocol Bridge                                        β”‚
β”‚           β”‚  A2A Β· MCP Β· IATP Β· Protocol translation Β· Capability scoping   β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  LAYER 1  β”‚  Identity & Zero-Trust Core                                     β”‚
β”‚           β”‚  Agent CA Β· Ephemeral creds Β· SPIFFE/SVID Β· Human sponsors      β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Why AgentMesh?

The Problem

  • 40:1 to 100:1 β€” Non-human identities now outnumber human identities in enterprises
  • AI agents are the fastest-growing, least-governed identity category
  • A2A gives agents a common language. MCP gives agents tools. Neither enforces trust.

The Solution

AgentMesh provides:

Capability Description
Agent Identity First-class identity with human sponsor accountability
Ephemeral Credentials 15-minute TTL by default, auto-rotation
Protocol Bridge Native A2A, MCP, IATP with unified trust model
Reward Engine Continuous behavioral scoring, not static rules
Compliance Automation EU AI Act, SOC 2, HIPAA, GDPR mapping

Quick Start

Option 1: Secure Claude Desktop (Recommended)

# Install AgentMesh
pip install agentmesh-platform

# Set up Claude Desktop to use AgentMesh governance
agentmesh init-integration --claude

# Restart Claude Desktop - all MCP tools are now secured!

Claude will now route tool calls through AgentMesh for policy enforcement and trust scoring.

Option 2: Create a Governed Agent

# Initialize a governed agent in 30 seconds
agentmesh init --name my-agent --sponsor alice@company.com

# Register with the mesh
agentmesh register

# Start with governance enabled
agentmesh run

Option 3: Wrap Any MCP Server

# Proxy any MCP server with governance
agentmesh proxy --target npx --target -y \
  --target @modelcontextprotocol/server-filesystem \
  --target /path/to/directory

# Use strict policy (blocks writes/deletes)
agentmesh proxy --policy strict --target <your-mcp-server>

Installation

pip install agentmesh-platform

Or install with extra dependencies:

pip install agentmesh-platform[server]  # FastAPI server
pip install agentmesh-platform[dev]     # Development tools

Or from source:

git clone https://github.com/imran-siddique/agent-mesh.git
cd agent-mesh
pip install -e .

Examples & Integrations

Real-world examples to get started quickly:

Example Use Case Key Features
MCP Tool Server Secure MCP server with governance Rate limiting, output sanitization, audit logs
Multi-Agent Customer Service Customer support automation Delegation chains, trust handshakes, A2A
Healthcare HIPAA HIPAA-compliant data analysis Compliance automation, PHI protection, Merkle audit
GitHub PR Review Code review agent Output policies, shadow mode, trust decay

Framework integrations:

πŸ“š Browse all examples β†’

The AgentMesh Proxy: "SSL for AI Agents"

Problem: AI agents like Claude Desktop have unfettered access to your filesystem, database, and APIs through MCP servers. One hallucination could be catastrophic.

Solution: AgentMesh acts as a transparent governance proxy:

# Before: Unsafe direct access
{
  "mcpServers": {
    "filesystem": {
      "command": "npx",
      "args": ["-y", "@modelcontextprotocol/server-filesystem", "/Users/me"]
    }
  }
}

# After: Protected by AgentMesh
{
  "mcpServers": {
    "filesystem": {
      "command": "agentmesh",
      "args": [
        "proxy", "--policy", "strict",
        "--target", "npx", "--target", "-y",
        "--target", "@modelcontextprotocol/server-filesystem",
        "--target", "/Users/me"
      ]
    }
  }
}

What you get:

  • πŸ”’ Policy Enforcement - Block dangerous operations before they execute
  • πŸ“Š Trust Scoring - Behavioral monitoring (800-1000 scale)
  • πŸ“ Audit Logs - Tamper-evident record of every action
  • βœ… Verification Footers - Visual confirmation in outputs

Set it up in 10 seconds:

agentmesh init-integration --claude
# Restart Claude Desktop - done!

Learn more: Claude Desktop Integration Guide

Core Concepts

1. Agent Identity

Every agent gets a unique, cryptographically bound identity:

from agentmesh import AgentIdentity

identity = AgentIdentity.create(
    name="data-analyst-agent",
    sponsor="alice@company.com",  # Human accountability
    capabilities=["read:data", "write:reports"],
)

2. Delegation Chains

Agents can delegate to sub-agents, but scope always narrows:

# Parent agent delegates to child
child_identity = parent_identity.delegate(
    name="summarizer-subagent",
    capabilities=["read:data"],  # Subset of parent's capabilities
)

3. Trust Handshakes (IATP)

Cross-agent communication requires trust verification:

from agentmesh import TrustBridge

bridge = TrustBridge()

# Verify peer before communication
verification = await bridge.verify_peer(
    peer_id="did:mesh:other-agent",
    required_trust_score=700,
)

if verification.verified:
    await bridge.send_message(peer_id, message)

4. Reward Scoring

Every action is scored across multiple dimensions:

from agentmesh import RewardEngine

engine = RewardEngine()

# Actions are automatically scored
score = engine.get_agent_score("did:mesh:my-agent")
# {
#   "total": 847,
#   "dimensions": {
#     "policy_compliance": 95,
#     "resource_efficiency": 82,
#     "output_quality": 88,
#     "security_posture": 91,
#     "collaboration_health": 84
#   }
# }

5. Policy Engine

Declarative governance policies:

# policy.yaml
version: "1.0"
agent: "data-analyst-agent"

rules:
  - name: "no-pii-export"
    condition: "action.type == 'export' and data.contains_pii"
    action: "deny"
    
  - name: "rate-limit-api"
    condition: "action.type == 'api_call'"
    limit: "100/hour"
    
  - name: "require-approval-for-delete"
    condition: "action.type == 'delete'"
    action: "require_approval"
    approvers: ["security-team"]

Protocol Support

Protocol Status Description
A2A βœ… Alpha Agent-to-agent coordination
MCP βœ… Alpha Tool and resource binding
IATP βœ… Alpha Trust handshakes (via agent-os)
ACP πŸ”„ Beta Lightweight messaging
SPIFFE βœ… Alpha Workload identity

Architecture

agentmesh/
β”œβ”€β”€ identity/           # Layer 1: Identity & Zero-Trust
β”‚   β”œβ”€β”€ agent_id.py     # Agent identity management
β”‚   β”œβ”€β”€ credentials.py  # Ephemeral credential issuance
β”‚   β”œβ”€β”€ delegation.py   # Delegation chains
β”‚   └── spiffe.py       # SPIFFE/SVID integration
β”‚
β”œβ”€β”€ trust/              # Layer 2: Trust & Protocol Bridge
β”‚   β”œβ”€β”€ bridge.py       # Protocol bridge
β”‚   β”œβ”€β”€ handshake.py    # Trust handshakes
β”‚   └── capability.py   # Capability scoping
β”‚
β”œβ”€β”€ protocols/          # Protocol implementations
β”‚   β”œβ”€β”€ a2a/            # A2A support
β”‚   β”œβ”€β”€ mcp/            # MCP support
β”‚   └── iatp/           # IATP (uses agent-os)
β”‚
β”œβ”€β”€ governance/         # Layer 3: Governance & Compliance
β”‚   β”œβ”€β”€ policy.py       # Policy engine
β”‚   β”œβ”€β”€ compliance.py   # Compliance mapping
β”‚   β”œβ”€β”€ audit.py        # Merkle-chained audit logs
β”‚   └── shadow.py       # Shadow mode
β”‚
β”œβ”€β”€ reward/             # Layer 4: Reward & Learning
β”‚   β”œβ”€β”€ engine.py       # Reward engine
β”‚   β”œβ”€β”€ scoring.py      # Multi-dimensional scoring
β”‚   └── learning.py     # Adaptive learning
β”‚
β”œβ”€β”€ cli/                # Command-line interface
└── sdk/                # Python SDK

Compliance

AgentMesh automates compliance mapping for:

  • EU AI Act β€” Risk classification, transparency requirements
  • SOC 2 β€” Security, availability, processing integrity
  • HIPAA β€” PHI handling, audit controls
  • GDPR β€” Data processing, consent, right to explanation
from agentmesh import ComplianceEngine

compliance = ComplianceEngine(frameworks=["soc2", "hipaa"])

# Generate compliance report
report = compliance.generate_report(
    agent_id="did:mesh:healthcare-agent",
    period="2026-01",
)

Threat Model

Threat AgentMesh Defense
Prompt Injection Tool output sanitized at Protocol Bridge
Credential Theft 15-min TTL, instant revocation on trust breach
Shadow Agents Unregistered agents blocked at network layer
Delegation Escalation Chains are cryptographically narrowing
Cascade Failure Per-agent trust scoring isolates blast radius

Roadmap

Phase Timeline Deliverables
Alpha Q1 2026 Identity Core, A2A+MCP bridge, CLI
Beta Q2 2026 IATP handshake, Reward Engine v1, Dashboard
GA Q3 2026 Compliance automation, Enterprise features
Scale Q4 2026 Agent Marketplace, Partner integrations

Dependencies

AgentMesh builds on:

  • agent-os β€” IATP protocol, Nexus trust exchange
  • SPIFFE/SPIRE β€” Workload identity
  • OpenTelemetry β€” Observability

Contributing

See CONTRIBUTING.md for guidelines.

License

Apache 2.0 β€” See LICENSE for details.


Agents shouldn't be islands. But they also shouldn't be ungoverned.

AgentMesh is the trust layer that makes the mesh safe enough to scale.

About

AgentMesh - The Secure Nervous System for Cloud-Native Agent Ecosystems. Identity, Trust, Reward, Governance for AI agents.

Resources

License

Code of conduct

Contributing

Security policy

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 68.2%
  • TeX 21.1%
  • TypeScript 9.3%
  • JavaScript 1.2%
  • Go Template 0.2%