Skip to content

lordlinus/parallel-file-processing-serverless

Repository files navigation

Parallel file processing using Azure Durable Functions

Problem statement

Azure durable functions is an extension of Azure Functions and allows you to build long running stateful workflows in a serverless environment. In this example we will take input files from raw folder and process these files in parallel in 4 steps. Each step will be executed in a separate function and output is saved in respective folders.

Why use Serverless

Main advantages of using serverless technologies are:

  • Pay only for what you use
  • No need to manage infrastructure and deployment
  • Code first and suitable to wait for external changes and events
  • Quickly Scalable for spiky workloads

Getting started

Running locally

  1. Clone this repository
  2. Create local.setting.json file with following content
{
  "IsEncrypted": false,
  "Values": {
    "AzureWebJobsStorage": "Replace with your storage account connection string to be used by Azure durable functions for state management",
    "DataStorage": "Replace with storage account connection string with raw data",
    "DataContainer": "Replace with storage account container name",
    "Step1DataSubpath": "folder name for step 1 output",
    "Step2DataSubpath": "folder name for step 2 output",
    "Step3DataSubpath": "folder name for step 3 output",
    "Step4DataSubpath": "folder name for step 4 output",
    "FUNCTIONS_WORKER_RUNTIME": "python"
  }
}
  1. use vscode and follow steps to run this function run locally

  2. Trigger execution of durable function using curl where

    • rawDataPath is folder name to generate random fheailes
    • numFiles number of random file to generate
    • numRows number of rows to generate in each file
 curl --location --request POST 'http://localhost:7071/api/orchestrators/OrchestratorFunc' \
--header 'Content-Type: application/json' \
--data-raw '{
    "rawDataPath": "raw",
    "numFiles": "4",
    "numRows": "10"
}'

sample response

{
  "id": "2647a2542e104c0fbb6a69e6cf360d51",
  "statusQueryGetUri": "http://localhost:7071/runtime/webhooks/durabletask/instances/2647a2542e104c0fbb6a69e6cf360d51?taskHub=TestHubName&connection=Storage&code=zernwZj2pkCdkWkerVCu7M1IeCMQejyobHLMbH2dTZxLq4Twy1Koyw==",
  "sendEventPostUri": "http://localhost:7071/runtime/webhooks/durabletask/instances/2647a2542e104c0fbb6a69e6cf360d51/raiseEvent/{eventName}?taskHub=TestHubName&connection=Storage&code=zernwZj2pkCdkWkerVCu7M1IeCMQejyobHLMbH2dTZxLq4Twy1Koyw==",
  "terminatePostUri": "http://localhost:7071/runtime/webhooks/durabletask/instances/2647a2542e104c0fbb6a69e6cf360d51/terminate?reason={text}&taskHub=TestHubName&connection=Storage&code=zernwZj2pkCdkWkerVCu7M1IeCMQejyobHLMbH2dTZxLq4Twy1Koyw==",
  "rewindPostUri": "http://localhost:7071/runtime/webhooks/durabletask/instances/2647a2542e104c0fbb6a69e6cf360d51/rewind?reason={text}&taskHub=TestHubName&connection=Storage&code=zernwZj2pkCdkWkerVCu7M1IeCMQejyobHLMbH2dTZxLq4Twy1Koyw==",
  "purgeHistoryDeleteUri": "http://localhost:7071/runtime/webhooks/durabletask/instances/2647a2542e104c0fbb6a69e6cf360d51?taskHub=TestHubName&connection=Storage&code=zernwZj2pkCdkWkerVCu7M1IeCMQejyobHLMbH2dTZxLq4Twy1Koyw==",
  "restartPostUri": "http://localhost:7071/runtime/webhooks/durabletask/instances/2647a2542e104c0fbb6a69e6cf360d51/restart?taskHub=TestHubName&connection=Storage&code=zernwZj2pkCdkWkerVCu7M1IeCMQejyobHLMbH2dTZxLq4Twy1Koyw=="
}

you can query the status of the function using the status query uri statusQueryGetUri.

  1. Deploy this function using anyone of the methods. Link

References

License

MIT


GitHub @lordlinus  ·  Twitter @lordlinus  ·  Linkedin Sunil Sattiraju

About

Parallel file processing using Azure durable functions in python

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages