by Sanghoon Hong, Byungseok Roh, Kye-hyeon Kim, Yeongjae Cheon, Minje Park (Intel Imaging and Camera Technology) Presented in EMDNN2016, a NIPS2016 workshop (arXiv link)
This repository is a fork from py-faster-rcnn and demonstrates the performance of PVANet.
You can refer to py-faster-rcnn README.md and faster-rcnn README.md for more information.
Please note that this repository doesn't contain our in-house codes used in the published article.
- This version of py-faster-rcnn is slower than our in-house runtime code (e.g. image pre-processing code written in Python)
- PVANet was trained by our in-house deep learning library, not by this implementation.
- There might be a tiny difference in VOC2012 test results, because some hidden parameters in py-faster-rcnn may be set differently with ours.
If you want to cite this work in your publication:
@article{hong2016pvanet,
title={{PVANet}: Lightweight Deep Neural Networks for Real-time Object Detection},
author={Hong, Sanghoon and Roh, Byungseok and Kim, Kye-Hyeon and Cheon, Yeongjae and Park, Minje},
journal={arXiv preprint arXiv:1611.08588},
year={2016}
}
-
Clone the Faster R-CNN repository
# Make sure to clone with --recursive git clone --recursive https://github.com/sanghoon/pva-faster-rcnn.git
-
We'll call the directory that you cloned Faster R-CNN into
FRCN_ROOT
. Build the Cython modulescd $FRCN_ROOT/lib make
-
Build Caffe and pycaffe
cd $FRCN_ROOT/caffe-fast-rcnn # Now follow the Caffe installation instructions here: # http://caffe.berkeleyvision.org/installation.html # For your Makefile.config: # Uncomment `WITH_PYTHON_LAYER := 1` cp Makefile.config.example Makefile.config make -j8 && make pycaffe
-
Download PVANet detection model for VOC2007
cd $FRCN_ROOT ./models/pvanet/download_voc2007.sh
-
Download PVANet detection model for VOC2012 (published model)
cd $FRCN_ROOT ./models/pvanet/download_voc_best.sh
-
(Optional) Download all available VOC models (including pre-trained and compressed models)
cd $FRCN_ROOT ./models/pvanet/download_all_models.sh
-
(Optional) Download ImageNet classification model
cd $FRCN_ROOT ./models/pvanet/download_imagenet_model.sh
- Download PASCAL VOC 2007 and 2012
- Follow the instructions in py-faster-rcnn README.md
-
PVANet on PASCAL VOC 2007
cd $FRCN_ROOT ./tools/test_net.py --net models/pvanet/pva9.1/PVA9.1_ImgNet_COCO_VOC0712.caffemodel --def models/pvanet/pva9.1/faster_rcnn_train_test_21cls.pt --cfg models/pvanet/cfgs/submit_1019.yml --gpu 0
-
PVANet (compressed)
cd $FRCN_ROOT ./tools/test_net.py --net models/pvanet/pva9.1/PVA9.1_ImgNet_COCO_VOC0712plus_compressed.caffemodel --def models/pvanet/pva9.1/faster_rcnn_train_test_ft_rcnn_only_plus_comp.pt --cfg models/pvanet/cfgs/submit_1019.yml --gpu 0
Model | VOC2007 mAP (%) | VOC2012 mAP (%) |
---|---|---|
PVANet+ (VOC2007) | 84.9 | N/A |
PVANet+ (VOC2012) | 89.8 | 84.2 |
PVANet+ (VOC2012 + compressed) | 87.8 | 83.7 |
- The training set for the VOC2012 model includes the VOC2007 test set. Therefore the accuracies on VOC2007 of the model are not meaningful; They're shown here just for reference
Input size | Top-1 error (%) | Top-5 error (%) |
---|---|---|
192x192 | 30.00 | N/A |
224x224 | 27.66 | 8.84 |
- We re-trained a 224x224 model from the '192x192' model as a base model.