Skip to content

Commit

Permalink
Built site for gh-pages
Browse files Browse the repository at this point in the history
  • Loading branch information
Quarto GHA Workflow Runner committed Jun 13, 2024
1 parent ba934f7 commit b33c978
Show file tree
Hide file tree
Showing 5 changed files with 28 additions and 28 deletions.
2 changes: 1 addition & 1 deletion .nojekyll
Original file line number Diff line number Diff line change
@@ -1 +1 @@
84850a78
bfe43cfe
2 changes: 1 addition & 1 deletion mod_data-viz.html
Original file line number Diff line number Diff line change
Expand Up @@ -1004,7 +1004,7 @@ <h3 class="anchored" data-anchor-id="presentation-vs.-publication">Presentation
</section>
<section id="ordination" class="level2">
<h2 class="anchored" data-anchor-id="ordination">Ordination</h2>
<p>If you are working with multivariate data (i.e., data where multiple columns are all response variables collectively) you may find ordination helpful. Ordination is the general term for many types of multivariate visualization but typically is used to refer to visualizing a distance or dissimiliarity measure of the data. Such measures collapse all of those columns of response variables into fewer (typically two) index values that are easier to visualize. Common examples of this include <u>P</u>rincipal <u>C</u>omponents <u>A</u>nalysis (PCA), <u>N</u>on-<u>M</u>etric <u>M</u>ultidimensional <u>S</u>caling (NMS / NMDS), or <u>P</u>rincipal <u>Co</u>ordinates <u>A</u>nalysis (PCoA / “metric multidimensional scaling”).</p>
<p>If you are working with multivariate data (i.e., data where multiple columns are all response variables collectively) you may find ordination helpful. Ordination is the general term for many types of multivariate visualization but typically is used to refer to visualizing a distance or dissimiliarity measure of the data. Such measures collapse all of those columns of response variables into fewer (typically two) index values that are easier to visualize. Common examples of this include <u>P</u>rincipal <u>C</u>omponents <u>A</u>nalysis (PCA), <u>N</u>onmetric <u>M</u>ultidimensional <u>S</u>caling (NMS / NMDS), or <u>P</u>rincipal <u>Co</u>ordinates <u>A</u>nalysis (PCoA / “metric multidimensional scaling”).</p>
</section>
<section id="maps" class="level2">
<h2 class="anchored" data-anchor-id="maps">Maps</h2>
Expand Down
Binary file modified mod_data-viz_files/figure-html/multi-modal-1.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
2 changes: 1 addition & 1 deletion search.json
Original file line number Diff line number Diff line change
Expand Up @@ -356,7 +356,7 @@
"href": "mod_data-viz.html#ordination",
"title": "Data Visualization & Exploration",
"section": "Ordination",
"text": "Ordination\nIf you are working with multivariate data (i.e., data where multiple columns are all response variables collectively) you may find ordination helpful. Ordination is the general term for many types of multivariate visualization but typically is used to refer to visualizing a distance or dissimiliarity measure of the data. Such measures collapse all of those columns of response variables into fewer (typically two) index values that are easier to visualize. Common examples of this include Principal Components Analysis (PCA), Non-Metric Multidimensional Scaling (NMS / NMDS), or Principal Coordinates Analysis (PCoA / “metric multidimensional scaling”).",
"text": "Ordination\nIf you are working with multivariate data (i.e., data where multiple columns are all response variables collectively) you may find ordination helpful. Ordination is the general term for many types of multivariate visualization but typically is used to refer to visualizing a distance or dissimiliarity measure of the data. Such measures collapse all of those columns of response variables into fewer (typically two) index values that are easier to visualize. Common examples of this include Principal Components Analysis (PCA), Nonmetric Multidimensional Scaling (NMS / NMDS), or Principal Coordinates Analysis (PCoA / “metric multidimensional scaling”).",
"crumbs": [
"Phase II -- Plan",
"Data Visualization"
Expand Down
50 changes: 25 additions & 25 deletions sitemap.xml
Original file line number Diff line number Diff line change
Expand Up @@ -2,102 +2,102 @@
<urlset xmlns="http://www.sitemaps.org/schemas/sitemap/0.9">
<url>
<loc>https://lter.github.io/ssecr/mod_wrangle.html</loc>
<lastmod>2024-06-10T15:41:51.927Z</lastmod>
<lastmod>2024-06-13T16:18:48.279Z</lastmod>
</url>
<url>
<loc>https://lter.github.io/ssecr/mod_version-control.html</loc>
<lastmod>2024-06-10T15:41:51.927Z</lastmod>
<lastmod>2024-06-13T16:18:48.279Z</lastmod>
</url>
<url>
<loc>https://lter.github.io/ssecr/mod_interactivity.html</loc>
<lastmod>2024-06-10T15:41:51.927Z</lastmod>
<lastmod>2024-06-13T16:18:48.279Z</lastmod>
</url>
<url>
<loc>https://lter.github.io/ssecr/mod_data-viz.html</loc>
<lastmod>2024-06-10T15:41:51.927Z</lastmod>
<lastmod>2024-06-13T16:18:48.279Z</lastmod>
</url>
<url>
<loc>https://lter.github.io/ssecr/mod_next-steps.html</loc>
<lastmod>2024-06-10T15:41:51.927Z</lastmod>
<lastmod>2024-06-13T16:18:48.279Z</lastmod>
</url>
<url>
<loc>https://lter.github.io/ssecr/mod_reports.html</loc>
<lastmod>2024-06-10T15:41:51.927Z</lastmod>
<lastmod>2024-06-13T16:18:48.279Z</lastmod>
</url>
<url>
<loc>https://lter.github.io/ssecr/mod_template.html</loc>
<lastmod>2024-06-10T15:41:51.927Z</lastmod>
<lastmod>2024-06-13T16:18:48.279Z</lastmod>
</url>
<url>
<loc>https://lter.github.io/ssecr/mod_findings.html</loc>
<lastmod>2024-06-10T15:41:51.927Z</lastmod>
<lastmod>2024-06-13T16:18:48.279Z</lastmod>
</url>
<url>
<loc>https://lter.github.io/ssecr/mod_reproducibility.html</loc>
<lastmod>2024-06-10T15:41:51.927Z</lastmod>
<lastmod>2024-06-13T16:18:48.279Z</lastmod>
</url>
<url>
<loc>https://lter.github.io/ssecr/policy_usability.html</loc>
<lastmod>2024-06-10T15:41:51.927Z</lastmod>
<lastmod>2024-06-13T16:18:48.279Z</lastmod>
</url>
<url>
<loc>https://lter.github.io/ssecr/mod_thinking.html</loc>
<lastmod>2024-06-10T15:41:51.927Z</lastmod>
<lastmod>2024-06-13T16:18:48.279Z</lastmod>
</url>
<url>
<loc>https://lter.github.io/ssecr/instructors.html</loc>
<lastmod>2024-06-10T15:41:51.927Z</lastmod>
<lastmod>2024-06-13T16:18:48.279Z</lastmod>
</url>
<url>
<loc>https://lter.github.io/ssecr/policy_attendance.html</loc>
<lastmod>2024-06-10T15:41:51.927Z</lastmod>
<lastmod>2024-06-13T16:18:48.279Z</lastmod>
</url>
<url>
<loc>https://lter.github.io/ssecr/mod_stats.html</loc>
<lastmod>2024-06-10T15:41:51.927Z</lastmod>
<lastmod>2024-06-13T16:18:48.279Z</lastmod>
</url>
<url>
<loc>https://lter.github.io/ssecr/CONTRIBUTING.html</loc>
<lastmod>2024-06-10T15:41:51.887Z</lastmod>
<lastmod>2024-06-13T16:18:48.239Z</lastmod>
</url>
<url>
<loc>https://lter.github.io/ssecr/mod_team-sci.html</loc>
<lastmod>2024-06-10T15:41:51.927Z</lastmod>
<lastmod>2024-06-13T16:18:48.279Z</lastmod>
</url>
<url>
<loc>https://lter.github.io/ssecr/policy_pronouns.html</loc>
<lastmod>2024-06-10T15:41:51.927Z</lastmod>
<lastmod>2024-06-13T16:18:48.279Z</lastmod>
</url>
<url>
<loc>https://lter.github.io/ssecr/index.html</loc>
<lastmod>2024-06-10T15:41:51.927Z</lastmod>
<lastmod>2024-06-13T16:18:48.279Z</lastmod>
</url>
<url>
<loc>https://lter.github.io/ssecr/policy_ai.html</loc>
<lastmod>2024-06-10T15:41:51.927Z</lastmod>
<lastmod>2024-06-13T16:18:48.279Z</lastmod>
</url>
<url>
<loc>https://lter.github.io/ssecr/mod_spatial.html</loc>
<lastmod>2024-06-10T15:41:51.927Z</lastmod>
<lastmod>2024-06-13T16:18:48.279Z</lastmod>
</url>
<url>
<loc>https://lter.github.io/ssecr/mod_credit.html</loc>
<lastmod>2024-06-10T15:41:51.927Z</lastmod>
<lastmod>2024-06-13T16:18:48.279Z</lastmod>
</url>
<url>
<loc>https://lter.github.io/ssecr/mod_facilitation.html</loc>
<lastmod>2024-06-10T15:41:51.927Z</lastmod>
<lastmod>2024-06-13T16:18:48.279Z</lastmod>
</url>
<url>
<loc>https://lter.github.io/ssecr/mod_project-mgmt.html</loc>
<lastmod>2024-06-10T15:41:51.927Z</lastmod>
<lastmod>2024-06-13T16:18:48.279Z</lastmod>
</url>
<url>
<loc>https://lter.github.io/ssecr/policy_conduct.html</loc>
<lastmod>2024-06-10T15:41:51.927Z</lastmod>
<lastmod>2024-06-13T16:18:48.279Z</lastmod>
</url>
<url>
<loc>https://lter.github.io/ssecr/mod_data-disc.html</loc>
<lastmod>2024-06-10T15:41:51.927Z</lastmod>
<lastmod>2024-06-13T16:18:48.279Z</lastmod>
</url>
</urlset>

0 comments on commit b33c978

Please sign in to comment.