Skip to content

lvsn/beyondthepixel

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Beyond the Pixel


This repository contains the calibration code (Calibration) and the deep learning code (Learning Tasks) for the paper Beyond the Pixel: a Photometrically Calibrated HDR Dataset for Luminance and Color Prediction

Requirements

pip install pytorch_lightning matplotlib skylibs glob2 opencv-contrib-python collections omegaconf natsort configargparse

Additionally, MATLAB is required for the HDR-VDP-3 metric.

Calibration

To run the calibration process for your own camera setup as it is done in the paper, follow the README in the Calibration folder.

Learning Tasks

The pipeline used for learning depends on the desired task. alt text

Per-pixel luminance outputs an HDR image and the scale needed to bring it to absolute luminance.

Per-pixel color predicts the temperature map directly.

Planar illuminance generate only the illuminance scalar.

Dataset preparation

If working with the full dataset (available at http://hdrdb.com/indoor-hdr-photometric/), it needs to be split in train/test/val , inpainted and rescaled to manageable size. The following script automate this to the setup used in the paper.

python prepare_dataset.py [path_to_full_dataset]

Training

For convenience, 3 config files are provided in configs/, one for each task.

python train.py --config [config_file]

Testing

When testing, it is best to link to the config file generated by the training script (by default in checkpoints/[name]/lightning_logs/version_[x]/config.txt)

The test.py script generate the inference predictions.

python test.py --config [config_file]

The metrics.py script computes the metrics and generate visualisations from the inference predictions.

python metrics.py --config [config_file]

Fine-tuning

When fine-tuning, the config file must be modified to increase the n_epoch property.

When fine-tuning, it is best to link to the config file generated by the training script (by default in checkpoints/[name]/lightning_logs/version_[x]/config.txt)

python fine-tune.py --config [config_file]

Pre-trained weights

If you wish to test or fine-tune the weights used in the paper, you can download them and place them in the checkpoints/ folder.

https://hdrdb-public.s3.valeria.science/indoor_photometric/[Experiment_name].zip

Experiment_name Mode In paper Link
Luminance_linear Luminance Table 1 link
Luminance_gamma Luminance Table 1 link
Luminance_noise Luminance Table 1 link
Luminance_quantized Luminance Table 1 link
Luminance_LDR Luminance Table 1 link
Luminance_LDR_fine_tune Luminance Table 3 link
Temperature_WB_rand_augment Temperature Figure 7 link
Temperature_WB_augment_theta_fine_tune Temperature Table 3 link
illum_hemi_HDR Illuminance Table 2 link
illum_hemi_LDR_scale Illuminance Table 2 link
illum_hemi_LDR Illuminance Table 2 link
illum_120_HDR Illuminance Table 2 link
illum_120_LDR_scale Illuminance Table 2 link
illum_120_LDR Illuminance Table 2 link
illum_60_HDR Illuminance Table 2 link
illum_60_LDR_scale Illuminance Table 2 link
illum_60_LDR Illuminance Table 2 link
illum_rand_HDR Illuminance Table 2 link
illum_rand_LDR_scale Illuminance Table 2 link
illum_rand_LDR Illuminance Table 2 link
illum_120_LDR_theta Illuminance Table 3 link

Paper

Beyond the Pixel: a Photometrically Calibrated HDR Dataset for Luminance and Color Prediction
Christophe Bolduc, Justine Giroux, Marc Hébert, Claude Demers, Jean-François Lalonde
International Conference on Computer Vision (ICCV), 2023
Project page / Paper / Dataset / BibTeX

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published