Skip to content

lylakirati/IL-suboptimal-expert

Repository files navigation

IL-suboptimal-expert

We provide examples on shell command to run our experiment. For example, to run the CNN experiment, do:

  • python run.py --platform nn --nn_type cnn --alt true

The --platform nn flag tells the script that we are running neural network using PyTorch. the --nn_type cnn command tells the script that we are using CNN (using --nn_type ffn tells the script to use feaddforwad neural network, which triggers memory error. To use that, you also need to specify the --state_size to be 84 * 84 * 4). The --alt true command tells the script to use all 960K data points,

To use part of the data, use command like the following:

  • python run.py --platform nn --nn_type cnn --alt false --data_size 1000

To use SKlearn, use command like the following, and you need to manually define the sklearn model in run.py

  • python run.py --platform sklearn --data_size 1000

To introduce suboptimality, use command like the following. --suboptimal_type alter_actions tells the script that the suboptimality is random perturbation. --suboptimal_portion tells that the portion to perturb is 20%.

  • python run.py --platform nn --nn_type cnn --alt true --suboptimal_type alter_actions --suboptimal_portion 0.2

If the suboptimality is downsample, then do something like the following, where --downsample_action 0 tells the model to downsample action 0

  • python run.py --platform nn --nn_type cnn --alt true --suboptimal_type downsample --suboptimal_portion 0.2 --downsample_action 0

The other arguments in the run.py are mostly model hyperparameters, and they should be self-explanatory (e.g., bs stands for batch size). You typically do not need to modify them.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •