Skip to content

maengjulie/Battery-Degradation-Analysis-Project-code

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Analysis-of-the-Degradation-Patterns-of-a-Battery

w. Solvay Korea, Ewha Research Team

Data Deonising

tsmoothie_denoising.py: Denoising ("smoothing") the battery retention curves using a LOWESS smoother (Python tsmoothie package)

  • Input: Raw battery data containing columns ‘battery_file_id’, 'DischargeCapacityRetention', 'Cyc_’, etc.
  • Output: Plot visualizations of discharge capacity retention for all battery ids and the csv files of the smoothing results. The original curves are in blue, and the smoothed curves are red. image
  • Output example
    image

Statistical Test

statistical_test.py: Performing Fischer’s exact test (or chi-squared test)

  • Input: profiling data that was put together for descriptive analysis of formed clusters
  • Output: Table images (values of significance highlighted in green) image
  • Output example image

Oversampling

SMOTEN_oversampling.py: Oversampling the clustered data while accounting for component distributions (Python SMOTEN package)

  • Input: Clustering result with meta data containing battery id, cluster, and components
  • Output: 29 plots and 1 csv file image
  • Output example image

Releases

No releases published

Packages

No packages published

Languages