Aqui estão alguns dos meus programas em inteligência artificial, machine learning e deep learning.
A idéia é apresentar meus trabalhos e construção de algoritmos|aplicações utilizando as linguagens python. Alguns são escritos da forma mais simples e sem o uso de bibliotecas pronta. Em geral de datasets públicos, e com uso de bibliotecas como Numpy, Pandas, Scikit-learn, CNTK, Keras e Pytorch. É possível ajudar a quem quer obter insights e desenvolver projetos nestas áreas.
-
Supervised Learning
- [Regression Models]
- Linear Regression
- Polynomial Regression
- Support Vector Regression
- Decision Tree Regression
- Random Forest Regression
- [Classification Models]
- Logistic Regression
- K-Nearest Neighbors
- Support Vector Machine
- Kernel Support Vector Machine
- Naive Bayes
- Decision Tree Classification
- Random Forest Classification [(Hyperparameter Tuning)]
- [LightGBM Classification with Feature Selection and Hyperparameter Tuning]
- Credit Card Fraud studies
- [Classification Models results]
- [LightGBM results with SMOTE]
- [Regression Models]
-
Unsupervised Learning
- Clustering
- [K-Means Clustering with Principal Component Analysis (PCA) visualization]
- [Hierarchical Clustering with Dendrogram]
- Association Rule Learning
- [Apriori]
- [Eclat]
- Clustering
-
Reinforcement Learning
- [Upper Confidence Bound]
- [Thompson Sampling]
-
Deep Learning
- Artifical Neural Network
- Classification
- [Geographic Segmentation of Bank data: ANN, Classification Models and HP Tuning]
- Regression
- [Combined Cycle Power Plant Data: ANN and Regression Models comparison]
- Classification
- Convolutional Neural Network
- [Cat or Dog: a CNN training]
- Recurrent Neural Network
- [Prediction of Financial Stock data with Long-Short Term Memory (LSTM) model]
- Artifical Neural Network