-
Create the conda environment:
conda create -n env_aid python=3.12 -y
-
Activate the environment:
conda activate env_aid
-
Clone this repository:
git clone https://github.com/marmotlab/AID.git
-
Install this repository in editable mode (from the repo root):
cd AID pip install -e .
Dataset Collection
python script/run.py --config-name dataset_rigtree_gpipp_delta.yaml --config-dir config/datasetPre-train with dataset
python script/run.py --config-name pre_diffusion_unet_gpipp_delta_rigtreedata.yaml --config-dir config/pretrainFine-tune with DPPO
python script/run.py --config-name ft_ppo_diffusion_unet_gpipp_delta_rigtreedata.yaml --config-dir config/finetuneEvaluate fine-tuned model
python script/run.py --config-name eval_ft_ppo_diffusion_unet_gpipp_delta_rigtreedata.yaml --config-dir config/evalIf you find this work useful, please consider citing us and the following works:
- AID: Agent Intent from Diffusion for Multi-Agent Informative Path Planning
@article{lew2025aid,
title={AID: Agent Intent from Diffusion for Multi-Agent Informative Path Planning},
author={Jeric Lew and Yuhong Cao and Derek Ming Siang Tan and Guillaume Sartoretti},
year={2025},
eprint={2512.02535},
archivePrefix={arXiv},
primaryClass={cs.RO},
url={https://arxiv.org/abs/2512.02535},
}- Intent-based Deep Reinforcement Learning for Multi-agent Informative Path Planning
@inproceedings{yang2023intent,
title={Intent-based deep reinforcement learning for multi-agent informative path planning},
author={Yang, Tianze and Cao, Yuhong and Sartoretti, Guillaume},
booktitle={2023 International Symposium on Multi-Robot and Multi-Agent Systems (MRS)},
pages={71--77},
year={2023},
organization={IEEE}
}- CAtNIPP: Context-Aware Attention-based Network for Informative Path Planning
@InProceedings{cao2022catnipp,
title = {Context-Aware Attention-based Network for Informative Path Planning},
author = {Cao, Yuhong and Wang, Yizhuo and Vashisth, Apoorva and Fan, Haolin and Sartoretti, Guillaume},
booktitle = {6th Annual Conference on Robot Learning},
year = {2022}
}We build on the codebase from IntentMAIPP and DPPO:
- Ren, A.Z., Lidard, J., Ankile, L.L., Simeonov, A., Agrawal, P., Majumdar, A., Burchfiel, B., Dai, H., Simchowitz, M.: Diffusion policy policy optimization.
@inproceedings{dppo2024,
title={Diffusion Policy Policy Optimization},
author={Ren, Allen Z. and Lidard, Justin and Ankile, Lars L. and Simeonov, Anthony and Agrawal, Pulkit and Majumdar, Anirudha and Burchfiel, Benjamin and Dai, Hongkai and Simchowitz, Max},
booktitle={arXiv preprint arXiv:2409.00588},
year={2024}
}