This short script is developed as pre-processing workstep to be used in an extended setting of pypsa-eur. Additional to pypsa-eur's default country settings, it covers the Ukraine and the Republic of Moldova. Nedded to make assumptions to distribute electricity demand.
Input:
- GDP_PPP_30arcsec_v3.nc: raw dataset. Available at: [M. Kummu, M. Taka, J. H. A. Guillaume. (2020), Data from: Gridded global datasets for Gross Domestic Product and Human Development Index over 1990-2015, Dryad, Dataset. doi: https://doi.org/10.5061/dryad.dk1j0] - PLEASE DOWNLOAD YOURSELF! -
- ppp_2013_1km_Aggregated.tif: raw dataset. Available at: [WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). doi: 10.5258/SOTON/WP00647] - PLEASE DOWNLOAD YOURSELF! -
- regions_onshore.geojson:
pypsa-eur
output file, available after executing the workflow inpypsa-eur/resources/regions_onshore.geojson
Output:
- ppp_2013_1km_Aggregated_and_GDP_per_capita_PPP_1990_2015_v2_mapped.csv: file that maps the pypsa-eur onshore regions in UA and MD to it's associated 0.6GDP+0.4POP value.
(previously) GDP_PPP_30arcsec_v3_mapped.csv: file that maps the pypsa-eur onshore regions in UA and MD to it's associated GDP value.
Requirements:
- python
- numpy
- xarray
- rioxarray
- geopandas
- pandas
- xagg