-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
test/runtests.jl: Add more tests to increase coverage and fix depreca…
…tion.
- Loading branch information
Showing
2 changed files
with
100 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,6 +1,102 @@ | ||
using LineageCollapse | ||
using Test | ||
using DataFrames | ||
using BioSequences | ||
using LineageCollapse | ||
using CSV | ||
using CairoMakie | ||
|
||
@testset "LineageCollapse.jl" begin | ||
@test 1 == 1 | ||
end | ||
@testset "Data Loading" begin | ||
# Create a temporary TSV file for testing | ||
test_data = """ | ||
sequence\tv_sequence_end\tj_sequence_start\tcdr3\tv_call\tj_call\tstop_codon | ||
ACGT\t2\t3\tCDR3\tV1\tJ1\tfalse | ||
TGCA\t3\t4\tCDR3_2\tV2\tJ2\ttrue | ||
""" | ||
test_file = tempname() * ".tsv" | ||
write(test_file, test_data) | ||
df = load_data(test_file) | ||
|
||
@test size(df) == (2, 7) | ||
@test names(df) == ["sequence", "v_sequence_end", "j_sequence_start", "cdr3", "v_call", "j_call", "stop_codon"] | ||
@test df.sequence == ["ACGT", "TGCA"] | ||
|
||
# Test with custom columns | ||
custom_data = """ | ||
seq\tcdr3\tv_call | ||
ACGT\tCDR3\tV1 | ||
TGCA\tCDR3_2\tV2 | ||
""" | ||
custom_file = tempname() * ".tsv" | ||
write(custom_file, custom_data) | ||
|
||
custom_df = load_data(custom_file, required_columns=[:seq, :cdr3, :v_call]) | ||
@test size(custom_df) == (2, 3) | ||
@test names(custom_df) == ["seq", "cdr3", "v_call"] | ||
end | ||
|
||
@testset "Preprocessing" begin | ||
test_df = DataFrame( | ||
sequence = ["ACGT", "TGCA", "GTAC", "CATG"], | ||
v_sequence_end = [2, 3, 2, 3], | ||
j_sequence_start = [3, 4, 3, 4], | ||
cdr3 = ["CDR3", "CDR3_2", missing, "CDR3_4"], | ||
v_call = ["V1,V2", "V2", "V3", "V4"], | ||
j_call = ["J1", "J2,J3", "J3", "J4"], | ||
stop_codon = [false, true, false, false] | ||
) | ||
|
||
processed_df = preprocess_data(test_df, min_d_region_length=1) | ||
@test nrow(processed_df) == 2 # After dropping missing CDR3 and stop codons | ||
@test :d_region in propertynames(processed_df) | ||
@test :v_call_first in propertynames(processed_df) | ||
@test :j_call_first in propertynames(processed_df) | ||
@test :cdr3_length in propertynames(processed_df) | ||
@test processed_df.v_call_first == ["V1", "V4"] | ||
@test processed_df.j_call_first == ["J1", "J4"] | ||
end | ||
|
||
@testset "Lineage Processing" begin | ||
@testset "Hamming Distance" begin | ||
seq1 = LongDNA{4}("ATCG") | ||
seq2 = LongDNA{4}("ATTG") | ||
@test LineageCollapse.hamming(seq1, seq2) == 1.0 | ||
end | ||
|
||
@testset "Pairwise Hamming" begin | ||
seqs = [LongDNA{4}("ATCG"), LongDNA{4}("ATTG"), LongDNA{4}("ATCG")] | ||
dist_matrix = LineageCollapse.pairwise_hamming(seqs) | ||
@test size(dist_matrix) == (3, 3) | ||
@test dist_matrix[1,2] == dist_matrix[2,1] == 1.0 | ||
@test dist_matrix[1,3] == dist_matrix[3,1] == 0.0 | ||
end | ||
|
||
@testset "Process Lineages" begin | ||
test_df = DataFrame( | ||
v_call_first = ["V1", "V1", "V2", "V2"], | ||
j_call_first = ["J1", "J1", "J2", "J2"], | ||
cdr3_length = [4, 4, 5, 5], | ||
cdr3 = ["ATCG", "ATTG", "ATCGA", "ATCGA"], | ||
d_region = ["TC", "TT", "TCG", "TCG"], | ||
cluster_size = [1, 1, 1, 1] | ||
) | ||
|
||
processed_df = process_lineages(test_df) | ||
@test :cluster in propertynames(processed_df) | ||
@test :cdr3_frequency in propertynames(processed_df) | ||
@test nrow(processed_df) <= nrow(test_df) # Some rows might be filtered out | ||
end | ||
end | ||
|
||
@testset "Visualization" begin | ||
test_df = DataFrame( | ||
cluster_size = [1, 2, 3, 4, 5], | ||
cdr3_length = [10, 11, 12, 13, 14], | ||
cdr3_frequency = [0.1, 0.2, 0.3, 0.4, 0.5], | ||
v_call_first = ["V1", "V2", "V3", "V4", "V5"] | ||
) | ||
|
||
fig = plot_diagnostics(test_df) | ||
@test fig isa CairoMakie.Figure | ||
end | ||
end |