Skip to content

Minimalist AI Chat UI — 30s deploy, zero registration, supports any OpenAI-compatible API; drag-and-drop RAG, vision support, web page parsing, and a plugin system for third‑party extensions and custom adapters.

License

Notifications You must be signed in to change notification settings

massif-01/ChatRaw

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

73 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ChatRaw

Lightweight AI Chat Interface with Plugin System | 轻量 AI 聊天界面与插件系统

Fast, Lightweight, Extensible | 快速、轻量、可扩展

License Python Docker

English | 中文


English

📸 Interface Preview

Main Chat Interface

Main Interface

Model Configuration

Model Configuration

Plugin Market

Plugin Market


🌟 Why ChatRaw?

Many developers, AI hardware vendors, and users just need a simple, lightweight application that can quickly demonstrate their model capabilities. That's why we created ChatRaw - a minimal, ready-to-use chat interface that deploys in seconds. No complex configuration, no heavy dependencies—just a clean, fast AI chat experience.


📦 Part 1: Core Features

Fast, Lightweight, Convenient

Core Highlights

  • 🪶 Ultra Lightweight - ~60MB memory footprint, optimized binary embedding storage
  • Instant Startup - Ready in seconds with connection pooling for fast API calls
  • 🎨 Custom Branding - Freely customize name, logo, and theme
  • 🔌 Universal API Support - Works with any OpenAI-compatible API (Ollama, vLLM, LocalAI, LM Studio, etc.)
  • 📄 Document Parsing - Native PDF, DOCX, TXT, MD parsing as chat context
  • 🖼️ Vision AI Ready - Multimodal image understanding with auto-compression
  • 🧠 Thinking Mode - Support for reasoning models (DeepSeek-R1, Qwen, o1, etc.)
  • 📱 Responsive Design - Optimized for desktop, tablet, and mobile
  • 🌍 Bilingual UI - English & Chinese with one-click switch
  • 🔒 Zero Registration - Settings auto-saved locally
  • 🐳 One-Click Deploy - Docker deployment in 30 seconds

Key Features

Multi-Model Configuration

  • Supports unlimited chat, embedding, and reranking models
  • Automatic API key rotation to bypass rate limits
  • Built-in endpoint validation and testing

Thinking Mode

  • Deep reasoning for supported models
  • Collapsible thought process display

Custom Branding

  • Customize interface: name, Logo, subtitle, avatar, and theme colors

Document & Image Support

  • Upload documents (PDF, DOCX, TXT, MD) as chat context. AI can read and reference document content
  • Attach images for multimodal understanding. Automatically compressed to WebP format (~2MB)

🔌 Part 2: Extension Plugins

Flexible, Free, Community-Driven

ChatRaw features a complete plugin system to extend functionality:

Official Plugins

🧠 Lightweight RAG Demo

  • Knowledge base management and retrieval
  • Embedding model configuration
  • Reranking model optimization
  • Document chunking and vectorization

🔍 Bocha Search

  • Web search
  • AI-powered intelligent search
  • Agent search mode
  • Semantic reranking

📊 Excel Parser

  • Support for .xlsx, .xls, .xlsm formats
  • Automatic table recognition
  • One-click install, no configuration needed

📋 CSV Parser

  • CSV/TSV file parsing
  • Multiple output formats
  • Lightweight implementation

Plugin Development

  • Complete development documentation
  • Rich hook system
  • Custom settings UI
  • One-click packaging and distribution

📖 Plugin Development Guide: Plugins/README.md


🚀 Quick Start

Option 1: Docker (Recommended)

# Pull image
docker pull massif01/chatraw:2.0.0

# Run container
docker run -d -p 51111:51111 -v chatraw-data:/app/data massif01/chatraw:2.0.0

Or use docker-compose:

docker-compose up -d

Access: http://localhost:51111

Option 2: From Source

Requirements: Python 3.12+

# Clone repository
git clone https://github.com/massif-01/ChatRaw.git
cd ChatRaw/backend

# Install dependencies
pip install -r requirements.txt

# Run
python main.py

Access: http://localhost:51111


🐳 Docker Multi-Platform Support

Supports the following platforms:

  • ✅ linux/amd64 (Intel/AMD x86_64)
  • ✅ linux/arm64 (Apple Silicon M-series, ARM64 servers, Raspberry Pi 4/5)
# Docker Hub
docker pull massif01/chatraw:latest

# GitHub Container Registry
docker pull ghcr.io/massif-01/chatraw:latest

🔄 Update Guide

Updating to v2.0.0

If you're upgrading from v1.x:

Docker Users:

# Stop and remove old container
docker stop chatraw && docker rm chatraw

# Pull new image
docker pull massif01/chatraw:2.0.0

# Run new container (data persists in volume)
docker run -d -p 51111:51111 -v chatraw-data:/app/data massif01/chatraw:2.0.0

Or with docker-compose:

# Pull new image
docker-compose pull

# Restart services
docker-compose up -d

Source Code Users:

cd ChatRaw
git pull origin main
cd backend
pip install -r requirements.txt --upgrade
python main.py

Important Changes in v2.0.0:

  • ⚠️ RAG functionality has been moved to a plugin
  • Install the "Lightweight RAG Demo" plugin from Plugin Market if you need RAG features
  • Default theme changed to light mode (can be changed in Settings)
  • All chat history and settings are automatically preserved

🛠️ Configuration

Initial Setup

  1. Open http://localhost:51111
  2. Click the Settings button in the bottom-left corner
  3. Go to Model Settings
  4. Add your API configuration:
    • API Base URL (e.g., https://api.openai.com/v1)
    • Model ID (e.g., gpt-4)
    • API Key
  5. Click Verify to test the connection
  6. Click Save

Custom Branding

In SettingsInterface, you can customize:

  • Application name and logo
  • User and AI avatars
  • Theme mode (light/dark)

Install Plugins

  1. Click the Plugins button in the bottom-left corner
  2. Browse the Plugin Market tab
  3. Click Install on any plugin
  4. After installation, enable the plugin in the Installed tab

📝 Use Cases

  • Developers: Quickly test and demo your AI models
  • AI Hardware Vendors: Showcase device capabilities with a ready-to-use interface
  • Researchers: Experiment with RAG, embeddings, and reranking
  • Students: Learn AI applications hands-on
  • Enterprises: Internal AI tools and knowledge bases

🤝 Contributing

Contributions are welcome! Please submit issues or pull requests.

Development Guidelines

  1. Fork this repository
  2. Create your feature branch (git checkout -b feature/AmazingFeature)
  3. Commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push to the branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

📄 License

Apache License 2.0

© 2026 ChatRaw by massif-01, RMinte AI Technology Co., Ltd.


🔗 Links


⭐ Star History

If you find ChatRaw useful, please give it a star! ⭐







中文

📸 界面展示

主聊天界面

主界面

模型配置

模型配置

插件市场

插件市场


🌟 为什么选择 ChatRaw?

很多开发者、AI 硬件厂商,甚至是用户只需要一个简洁轻量,能够快速展示自己模型使用的应用,于是我们提供了极简、开箱即用的聊天界面,秒级部署。无需复杂配置,无重型依赖——只需一个干净、快速的 AI 聊天体验。


📦 第一部分:核心功能

快速、轻量、便捷

核心亮点

  • 🪶 极致轻量 - 内存占用约 60MB,优化的二进制向量存储
  • 极速启动 - 秒级启动,连接池加速 API 调用
  • 🎨 自定义品牌 - 自由定制名称、Logo 和主题
  • 🔌 通用 API 支持 - 兼容任意 OpenAI 兼容 API(Ollama、vLLM、LocalAI、LM Studio 等)
  • 📄 文档解析 - 原生支持 PDF、DOCX、TXT、MD 解析作为聊天上下文
  • 🖼️ 视觉 AI 就绪 - 多模态图片理解,自动压缩
  • 🧠 思考模式 - 支持推理模型(DeepSeek-R1、Qwen、o1 等)
  • 📱 响应式设计 - 完美适配桌面、平板和移动设备
  • 🌍 双语界面 - 中英文一键切换
  • 🔒 零注册 - 设置本地自动保存
  • 🐳 一键部署 - Docker 30 秒部署

主要功能

多模型配置

  • 支持无限数量的聊天、嵌入和重排模型
  • 自动 API Key 轮换以绕过速率限制
  • 内置端点验证和测试

思考模式

  • 为支持的模型启用深度推理
  • 可折叠的思考过程显示

自定义品牌

  • 自定义界面:名称、Logo、副标题、头像和主题颜色

文档与图片支持

  • 上传文档(PDF、DOCX、TXT、MD)作为聊天上下文。AI 可以阅读和引用文档内容
  • 附加图片进行多模态理解。自动压缩为 WebP 格式(约 2MB)

🔌 第二部分:扩展插件

灵活、自由、社区驱动

ChatRaw 拥有完整的插件系统以扩展功能:

官方插件

🧠 轻量 RAG 演示

  • 知识库管理与检索
  • 嵌入模型配置
  • 重排模型优化
  • 文档切片与向量化

🔍 博查搜索

  • Web 通搜
  • AI 智能搜索
  • Agent 搜索模式
  • 语义重排

📊 Excel 解析器

  • 支持 .xlsx, .xls, .xlsm 格式
  • 自动表格识别
  • 一键安装,无需配置

📋 CSV 解析器

  • CSV/TSV 文件解析
  • 多种输出格式
  • 轻量级实现

插件开发

  • 完整的开发文档
  • 丰富的 Hook 系统
  • 自定义设置界面
  • 一键打包分发

📖 插件开发指南: Plugins/README.md


🚀 快速开始

方式一:Docker(推荐)

# 拉取镜像
docker pull massif01/chatraw:2.0.0

# 运行容器
docker run -d -p 51111:51111 -v chatraw-data:/app/data massif01/chatraw:2.0.0

或使用 docker-compose:

docker-compose up -d

访问:http://localhost:51111

方式二:源码部署

环境要求:Python 3.12+

# 克隆仓库
git clone https://github.com/massif-01/ChatRaw.git
cd ChatRaw/backend

# 安装依赖
pip install -r requirements.txt

# 运行
python main.py

访问:http://localhost:51111


🐳 Docker 多平台支持

支持以下平台:

  • ✅ linux/amd64 (Intel/AMD x86_64)
  • ✅ linux/arm64 (Apple Silicon M 系列、ARM64 服务器、树莓派 4/5)
# Docker Hub
docker pull massif01/chatraw:latest

# GitHub Container Registry
docker pull ghcr.io/massif-01/chatraw:latest

🔄 更新指南

升级到 v2.0.0

如果你正在从 v1.x 升级:

Docker 用户:

# 停止并移除旧容器
docker stop chatraw && docker rm chatraw

# 拉取新镜像
docker pull massif01/chatraw:2.0.0

# 运行新容器(数据持久化在卷中)
docker run -d -p 51111:51111 -v chatraw-data:/app/data massif01/chatraw:2.0.0

或使用 docker-compose:

# 拉取新镜像
docker-compose pull

# 重启服务
docker-compose up -d

源码用户:

cd ChatRaw
git pull origin main
cd backend
pip install -r requirements.txt --upgrade
python main.py

v2.0.0 重要变更:

  • ⚠️ RAG 功能已迁移至插件
  • 如需使用 RAG 功能,请从插件市场安装"轻量 RAG 演示"插件
  • 默认主题改为亮色模式(可在设置中更改)
  • 所有对话历史和设置会自动保留

🛠️ 配置说明

初始设置

  1. 打开 http://localhost:51111
  2. 点击左下角的设置按钮
  3. 进入模型设置
  4. 添加你的 API 配置:
    • API Base URL(例如:https://api.openai.com/v1
    • Model ID(例如:gpt-4
    • API Key
  5. 点击验证测试连接
  6. 点击保存

自定义品牌

设置界面中,你可以自定义:

  • 应用名称和 Logo
  • 用户和 AI 头像
  • 主题模式(亮色/暗色)

安装插件

  1. 点击左下角的插件按钮
  2. 浏览插件市场标签页
  3. 点击任意插件的安装按钮
  4. 安装后,在已安装标签页中启用插件

📝 使用场景

  • 开发者:快速测试和演示你的 AI 模型
  • AI 硬件厂商:用即插即用的界面展示设备能力
  • 研究人员:实验 RAG、嵌入和重排技术
  • 学生:动手学习 AI 应用
  • 企业:内部 AI 工具和知识库

🤝 贡献

欢迎贡献!请提交 issue 或 pull request。

开发指南

  1. Fork 本仓库
  2. 创建你的特性分支 (git checkout -b feature/AmazingFeature)
  3. 提交你的更改 (git commit -m 'Add some AmazingFeature')
  4. 推送到分支 (git push origin feature/AmazingFeature)
  5. 打开一个 Pull Request

📄 开源协议

Apache License 2.0

© 2026 ChatRaw by massif-01, RMinte AI Technology Co., Ltd.


🔗 相关链接


⭐ Star 历史

如果你觉得 ChatRaw 有用,请给我们一个 Star!⭐

About

Minimalist AI Chat UI — 30s deploy, zero registration, supports any OpenAI-compatible API; drag-and-drop RAG, vision support, web page parsing, and a plugin system for third‑party extensions and custom adapters.

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published