Lightweight AI Chat Interface with Plugin System | 轻量 AI 聊天界面与插件系统
Fast, Lightweight, Extensible | 快速、轻量、可扩展
Many developers, AI hardware vendors, and users just need a simple, lightweight application that can quickly demonstrate their model capabilities. That's why we created ChatRaw - a minimal, ready-to-use chat interface that deploys in seconds. No complex configuration, no heavy dependencies—just a clean, fast AI chat experience.
Fast, Lightweight, Convenient
- 🪶 Ultra Lightweight - ~60MB memory footprint, optimized binary embedding storage
- ⚡ Instant Startup - Ready in seconds with connection pooling for fast API calls
- 🎨 Custom Branding - Freely customize name, logo, and theme
- 🔌 Universal API Support - Works with any OpenAI-compatible API (Ollama, vLLM, LocalAI, LM Studio, etc.)
- 📄 Document Parsing - Native PDF, DOCX, TXT, MD parsing as chat context
- 🖼️ Vision AI Ready - Multimodal image understanding with auto-compression
- 🧠 Thinking Mode - Support for reasoning models (DeepSeek-R1, Qwen, o1, etc.)
- 📱 Responsive Design - Optimized for desktop, tablet, and mobile
- 🌍 Bilingual UI - English & Chinese with one-click switch
- 🔒 Zero Registration - Settings auto-saved locally
- 🐳 One-Click Deploy - Docker deployment in 30 seconds
Multi-Model Configuration
- Supports unlimited chat, embedding, and reranking models
- Automatic API key rotation to bypass rate limits
- Built-in endpoint validation and testing
Thinking Mode
- Deep reasoning for supported models
- Collapsible thought process display
Custom Branding
- Customize interface: name, Logo, subtitle, avatar, and theme colors
Document & Image Support
- Upload documents (PDF, DOCX, TXT, MD) as chat context. AI can read and reference document content
- Attach images for multimodal understanding. Automatically compressed to WebP format (~2MB)
Flexible, Free, Community-Driven
ChatRaw features a complete plugin system to extend functionality:
- Knowledge base management and retrieval
- Embedding model configuration
- Reranking model optimization
- Document chunking and vectorization
- Web search
- AI-powered intelligent search
- Agent search mode
- Semantic reranking
- Support for .xlsx, .xls, .xlsm formats
- Automatic table recognition
- One-click install, no configuration needed
- CSV/TSV file parsing
- Multiple output formats
- Lightweight implementation
- Complete development documentation
- Rich hook system
- Custom settings UI
- One-click packaging and distribution
📖 Plugin Development Guide: Plugins/README.md
# Pull image
docker pull massif01/chatraw:2.0.0
# Run container
docker run -d -p 51111:51111 -v chatraw-data:/app/data massif01/chatraw:2.0.0Or use docker-compose:
docker-compose up -dAccess: http://localhost:51111
Requirements: Python 3.12+
# Clone repository
git clone https://github.com/massif-01/ChatRaw.git
cd ChatRaw/backend
# Install dependencies
pip install -r requirements.txt
# Run
python main.pyAccess: http://localhost:51111
Supports the following platforms:
- ✅ linux/amd64 (Intel/AMD x86_64)
- ✅ linux/arm64 (Apple Silicon M-series, ARM64 servers, Raspberry Pi 4/5)
# Docker Hub
docker pull massif01/chatraw:latest
# GitHub Container Registry
docker pull ghcr.io/massif-01/chatraw:latestIf you're upgrading from v1.x:
Docker Users:
# Stop and remove old container
docker stop chatraw && docker rm chatraw
# Pull new image
docker pull massif01/chatraw:2.0.0
# Run new container (data persists in volume)
docker run -d -p 51111:51111 -v chatraw-data:/app/data massif01/chatraw:2.0.0Or with docker-compose:
# Pull new image
docker-compose pull
# Restart services
docker-compose up -dSource Code Users:
cd ChatRaw
git pull origin main
cd backend
pip install -r requirements.txt --upgrade
python main.pyImportant Changes in v2.0.0:
⚠️ RAG functionality has been moved to a plugin- Install the "Lightweight RAG Demo" plugin from Plugin Market if you need RAG features
- Default theme changed to light mode (can be changed in Settings)
- All chat history and settings are automatically preserved
- Open http://localhost:51111
- Click the Settings button in the bottom-left corner
- Go to Model Settings
- Add your API configuration:
- API Base URL (e.g.,
https://api.openai.com/v1) - Model ID (e.g.,
gpt-4) - API Key
- API Base URL (e.g.,
- Click Verify to test the connection
- Click Save
In Settings → Interface, you can customize:
- Application name and logo
- User and AI avatars
- Theme mode (light/dark)
- Click the Plugins button in the bottom-left corner
- Browse the Plugin Market tab
- Click Install on any plugin
- After installation, enable the plugin in the Installed tab
- Developers: Quickly test and demo your AI models
- AI Hardware Vendors: Showcase device capabilities with a ready-to-use interface
- Researchers: Experiment with RAG, embeddings, and reranking
- Students: Learn AI applications hands-on
- Enterprises: Internal AI tools and knowledge bases
Contributions are welcome! Please submit issues or pull requests.
- Fork this repository
- Create your feature branch (
git checkout -b feature/AmazingFeature) - Commit your changes (
git commit -m 'Add some AmazingFeature') - Push to the branch (
git push origin feature/AmazingFeature) - Open a Pull Request
Apache License 2.0
© 2026 ChatRaw by massif-01, RMinte AI Technology Co., Ltd.
- 🌐 GitHub: https://github.com/massif-01/ChatRaw
- 🐋 Docker Hub: https://hub.docker.com/r/massif01/chatraw
- 📖 Plugin Development: Plugins/README.md
- 🐛 Issue Tracker: https://github.com/massif-01/ChatRaw/issues
If you find ChatRaw useful, please give it a star! ⭐
很多开发者、AI 硬件厂商,甚至是用户只需要一个简洁轻量,能够快速展示自己模型使用的应用,于是我们提供了极简、开箱即用的聊天界面,秒级部署。无需复杂配置,无重型依赖——只需一个干净、快速的 AI 聊天体验。
快速、轻量、便捷
- 🪶 极致轻量 - 内存占用约 60MB,优化的二进制向量存储
- ⚡ 极速启动 - 秒级启动,连接池加速 API 调用
- 🎨 自定义品牌 - 自由定制名称、Logo 和主题
- 🔌 通用 API 支持 - 兼容任意 OpenAI 兼容 API(Ollama、vLLM、LocalAI、LM Studio 等)
- 📄 文档解析 - 原生支持 PDF、DOCX、TXT、MD 解析作为聊天上下文
- 🖼️ 视觉 AI 就绪 - 多模态图片理解,自动压缩
- 🧠 思考模式 - 支持推理模型(DeepSeek-R1、Qwen、o1 等)
- 📱 响应式设计 - 完美适配桌面、平板和移动设备
- 🌍 双语界面 - 中英文一键切换
- 🔒 零注册 - 设置本地自动保存
- 🐳 一键部署 - Docker 30 秒部署
多模型配置
- 支持无限数量的聊天、嵌入和重排模型
- 自动 API Key 轮换以绕过速率限制
- 内置端点验证和测试
思考模式
- 为支持的模型启用深度推理
- 可折叠的思考过程显示
自定义品牌
- 自定义界面:名称、Logo、副标题、头像和主题颜色
文档与图片支持
- 上传文档(PDF、DOCX、TXT、MD)作为聊天上下文。AI 可以阅读和引用文档内容
- 附加图片进行多模态理解。自动压缩为 WebP 格式(约 2MB)
灵活、自由、社区驱动
ChatRaw 拥有完整的插件系统以扩展功能:
- 知识库管理与检索
- 嵌入模型配置
- 重排模型优化
- 文档切片与向量化
- Web 通搜
- AI 智能搜索
- Agent 搜索模式
- 语义重排
- 支持 .xlsx, .xls, .xlsm 格式
- 自动表格识别
- 一键安装,无需配置
- CSV/TSV 文件解析
- 多种输出格式
- 轻量级实现
- 完整的开发文档
- 丰富的 Hook 系统
- 自定义设置界面
- 一键打包分发
📖 插件开发指南: Plugins/README.md
# 拉取镜像
docker pull massif01/chatraw:2.0.0
# 运行容器
docker run -d -p 51111:51111 -v chatraw-data:/app/data massif01/chatraw:2.0.0或使用 docker-compose:
docker-compose up -d环境要求:Python 3.12+
# 克隆仓库
git clone https://github.com/massif-01/ChatRaw.git
cd ChatRaw/backend
# 安装依赖
pip install -r requirements.txt
# 运行
python main.py支持以下平台:
- ✅ linux/amd64 (Intel/AMD x86_64)
- ✅ linux/arm64 (Apple Silicon M 系列、ARM64 服务器、树莓派 4/5)
# Docker Hub
docker pull massif01/chatraw:latest
# GitHub Container Registry
docker pull ghcr.io/massif-01/chatraw:latest如果你正在从 v1.x 升级:
Docker 用户:
# 停止并移除旧容器
docker stop chatraw && docker rm chatraw
# 拉取新镜像
docker pull massif01/chatraw:2.0.0
# 运行新容器(数据持久化在卷中)
docker run -d -p 51111:51111 -v chatraw-data:/app/data massif01/chatraw:2.0.0或使用 docker-compose:
# 拉取新镜像
docker-compose pull
# 重启服务
docker-compose up -d源码用户:
cd ChatRaw
git pull origin main
cd backend
pip install -r requirements.txt --upgrade
python main.pyv2.0.0 重要变更:
⚠️ RAG 功能已迁移至插件- 如需使用 RAG 功能,请从插件市场安装"轻量 RAG 演示"插件
- 默认主题改为亮色模式(可在设置中更改)
- 所有对话历史和设置会自动保留
- 打开 http://localhost:51111
- 点击左下角的设置按钮
- 进入模型设置
- 添加你的 API 配置:
- API Base URL(例如:
https://api.openai.com/v1) - Model ID(例如:
gpt-4) - API Key
- API Base URL(例如:
- 点击验证测试连接
- 点击保存
在设置 → 界面中,你可以自定义:
- 应用名称和 Logo
- 用户和 AI 头像
- 主题模式(亮色/暗色)
- 点击左下角的插件按钮
- 浏览插件市场标签页
- 点击任意插件的安装按钮
- 安装后,在已安装标签页中启用插件
- 开发者:快速测试和演示你的 AI 模型
- AI 硬件厂商:用即插即用的界面展示设备能力
- 研究人员:实验 RAG、嵌入和重排技术
- 学生:动手学习 AI 应用
- 企业:内部 AI 工具和知识库
欢迎贡献!请提交 issue 或 pull request。
- Fork 本仓库
- 创建你的特性分支 (
git checkout -b feature/AmazingFeature) - 提交你的更改 (
git commit -m 'Add some AmazingFeature') - 推送到分支 (
git push origin feature/AmazingFeature) - 打开一个 Pull Request
Apache License 2.0
© 2026 ChatRaw by massif-01, RMinte AI Technology Co., Ltd.
- 🌐 GitHub: https://github.com/massif-01/ChatRaw
- 🐋 Docker Hub: https://hub.docker.com/r/massif01/chatraw
- 📖 插件开发: Plugins/README.md
- 🐛 问题反馈: https://github.com/massif-01/ChatRaw/issues
如果你觉得 ChatRaw 有用,请给我们一个 Star!⭐


