Skip to content

Commit

Permalink
Add OPTIMADE adapter
Browse files Browse the repository at this point in the history
  • Loading branch information
ml-evs committed Jun 11, 2024
1 parent 4542689 commit 6eaba80
Show file tree
Hide file tree
Showing 2 changed files with 216 additions and 0 deletions.
193 changes: 193 additions & 0 deletions pymatgen/io/optimade.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,193 @@
"""
This module provides conversion between structure entries following the
OPTIMADE (https://optimade.org) standard and pymatgen Structure objects.
The code is adapted from the `optimade.adapters.structures.pymatgen` module in
optimade-python-tools (https://github.com/Materials-Consortia/optimade-python-tools),
and aims to work without requiring the explicit installation of the `optimade-python-tools`.
"""

from __future__ import annotations

import itertools
import json
import math
import re
from functools import reduce
from typing import TYPE_CHECKING

from pymatgen.core.structure import Lattice, Structure

if TYPE_CHECKING:
from collections.abc import Generator
from typing import Any


__author__ = "Matthew Evans"


def _pymatgen_species(
nsites: int,
species_at_sites: list[str],
) -> list[dict[str, float]]:
"""Create list of {"symbol": "concentration"} per site for constructing pymatgen Species objects.
Removes vacancies, if they are present.
This function is adapted from the `optimade.adapters.structures.pymatgen` module in `optimade-python-tools`,
with some of the generality removed (in terms of partial occupancy).
"""
species = [{"name": _, "concentration": [1.0], "chemical_symbols": [_]} for _ in set(species_at_sites)]
species_dict = {_["name"]: _ for _ in species}

pymatgen_species = []
for site_number in range(nsites):
species_name = species_at_sites[site_number]
current_species = species_dict[species_name]

chemical_symbols = []
concentration = []
for index, symbol in enumerate(current_species["chemical_symbols"]):
if symbol == "vacancy":
# Skip. This is how pymatgen handles vacancies;
# to not include them, while keeping the concentration in a site less than 1.
continue
chemical_symbols.append(symbol)
concentration.append(current_species["concentration"][index])

pymatgen_species.append(dict(zip(chemical_symbols, concentration)))

return pymatgen_species


def _optimade_anonymous_element_generator() -> Generator[str, None, None]:
"""Generator that yields the next symbol in the A, B, Aa, ... Az OPTIMADE anonymous
element naming scheme.
"""
from string import ascii_lowercase

for size in itertools.count(1):
for tuple_strings in itertools.product(ascii_lowercase, repeat=size):
list_strings = list(tuple_strings)
list_strings[0] = list_strings[0].upper()
yield "".join(list_strings)


def _optimade_reduce_or_anonymize_formula(formula: str, alphabetize: bool = True, anonymize: bool = False) -> str:
"""Takes an input formula, reduces it and either alphabetizes or anonymizes it
following the OPTIMADE standard.
"""

numbers: list[int] = [int(n.strip() or 1) for n in re.split(r"[A-Z][a-z]*", formula)[1:]]
# Need to remove leading 1 from split and convert to ints

species: list[str] = re.findall("[A-Z][a-z]*", formula)

gcd = reduce(math.gcd, numbers)

if not len(species) == len(numbers):
raise ValueError(f"Something is wrong with the input formula: {formula}")

numbers = [n // gcd for n in numbers]

if anonymize:
numbers = sorted(numbers, reverse=True)
species = [s for _, s in zip(numbers, _optimade_anonymous_element_generator())]

elif alphabetize:
species, numbers = zip(*sorted(zip(species, numbers))) # type: ignore[assignment]

return "".join(f"{s}{n if n != 1 else ''}" for n, s in zip(numbers, species))


class OptimadeStructureAdapter:
"""Adapter serves as a bridge between OPTIMADE structures and pymatgen objects."""

@staticmethod
def get_optimade_structure(structure: Structure, **kwargs) -> dict[str, str | dict[str, Any]]:
"""Get a dictionary in the OPTIMADE Structure format from a pymatgen structure or molecule.
Args:
structure (Structure): pymatgen Structure
**kwargs: passed to the ASE Atoms constructor
Returns:
A dictionary serialization of the structure in the OPTIMADE format.
"""
if not structure.is_ordered:
raise ValueError("OPTIMADE Adapter currently only supports ordered structures")

attributes: dict[str, Any] = {}
attributes["cartesian_site_positions"] = structure.lattice.get_cartesian_coords(structure.frac_coords).tolist()
attributes["lattice_vectors"] = structure.lattice.matrix.tolist()
attributes["species_at_sites"] = [_.symbol for _ in structure.species]
attributes["species"] = [
{"name": _.symbol, "chemical_symbols": [_.symbol], "concentration": [1]}
for _ in set(structure.composition.elements)
]
attributes["dimension_types"] = [int(_) for _ in structure.lattice.pbc]
attributes["nperiodic_dimensions"] = sum(attributes["dimension_types"])
attributes["nelements"] = len(structure.composition.elements)
attributes["chemical_formula_anonymous"] = _optimade_reduce_or_anonymize_formula(
structure.composition.formula, anonymize=True
)
attributes["elements"] = sorted([_.symbol for _ in structure.composition.elements])
attributes["chemical_formula_reduced"] = _optimade_reduce_or_anonymize_formula(
structure.composition.formula, anonymize=False
)
attributes["chemical_formula_descriptive"] = structure.composition.formula
attributes["elements_ratios"] = [structure.composition.get_atomic_fraction(e) for e in attributes["elements"]]
attributes["nsites"] = len(attributes["species_at_sites"])

attributes["last_modified"] = None
attributes["immutable_id"] = None
attributes["structure_features"] = []

return {"attributes": attributes}

@staticmethod
def get_structure(resource: dict, embed_as_properties: bool = True) -> Structure:
"""Get pymatgen structure from an OPTIMADE structure resource.
Args:
resource: OPTIMADE structure resource as a dictionary, JSON string, or the
corresponding attributes dictionary (i.e., `resource["attributes"]`).
embed_as_properties: Whether to embed the entire OPTIMADE resource dictionary
(which may include additional custom fields) as properties in the pymatgen Structure.
Returns:
Structure: Equivalent pymatgen Structure
"""
if isinstance(resource, str):
try:
resource = json.loads(resource)
except json.JSONDecodeError as exc:
raise ValueError(f"Could not decode the input OPTIMADE resource as JSON: {exc}")

if "attributes" not in resource:
resource = {"attributes": resource}

id = resource.get("id", None)
attributes = resource["attributes"]
properties: dict[str, Any] = {"optimade_id": id}
if embed_as_properties:
properties["optimade_attributes"] = attributes

return Structure(
lattice=Lattice(
attributes["lattice_vectors"],
[bool(d) for d in attributes["dimension_types"]], # type: ignore[arg-type]
),
species=_pymatgen_species(
nsites=attributes["nsites"],
species_at_sites=attributes["species_at_sites"],
),
coords=attributes["cartesian_site_positions"],
coords_are_cartesian=True,
properties=properties,
)
23 changes: 23 additions & 0 deletions tests/io/test_optimade.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
from __future__ import annotations

import numpy as np

from pymatgen.core import Structure
from pymatgen.io.optimade import OptimadeStructureAdapter
from pymatgen.util.testing import TEST_FILES_DIR, VASP_IN_DIR

STRUCTURE = Structure.from_file(f"{VASP_IN_DIR}/POSCAR")
XYZ_STRUCTURE = f"{TEST_FILES_DIR}/io/xyz/acetylene.xyz"


def test_get_optimade_from_structure():
optimade_structure = OptimadeStructureAdapter.get_optimade_structure(STRUCTURE)

assert optimade_structure["attributes"]["nsites"] == len(STRUCTURE)
assert optimade_structure["attributes"]["elements"] == ["Fe", "O", "P"]
assert optimade_structure["attributes"]["nelements"] == 3
assert optimade_structure["attributes"]["chemical_formula_reduced"] == "FeO4P"
assert optimade_structure["attributes"]["species_at_sites"] == 4 * ["Fe"] + 4 * ["P"] + 16 * ["O"]
np.testing.assert_array_almost_equal(
np.abs(optimade_structure["attributes"]["lattice_vectors"]), np.abs(STRUCTURE.lattice.matrix)
)

0 comments on commit 6eaba80

Please sign in to comment.