Skip to content

materialstheory/multipyles

Repository files navigation

Multipyles: computing multipoles in python

This repository contains a python package to compute the multipole moments from a local density matrix (e.g., from density-functional theory or dynamical mean-field theory) and files for performing multipole-constrained calculations:

  • example.ipynb: examples on how to use the code and benchmark against VASP for Cr2O3 (data in folder tests/Cr2O3_benchmark_vasp/)
  • multipyles/: the python package, containing
    • multipyles.py: all the functions for calculating multipoles and postprocessing the results
    • read_from_dft.py: functions to read either density matrices to feed into the program or calculated multipoles from different DFT codes for comparison
    • helper.py and multipole_eqs.py: helper functions needed in multipoles.py
  • tests/: the test suite for pytest
  • constrained_dft_vasp/: the files needed to perform multipole-constrained DFT calculations. Please look at the README there for more information.

If you add the directory this README is in to the sys.path, you can import the python code with

from multipyles import multipyles, read_from_dft

It currently works for all density matrices with the same orbital moment $l = l'$.

This code is based on Bultmark et al. (2009).

Data sources and computable quantities

Currently, there are implementations for reading the density matrix from VASP and less well tested ones for abinit and Elk. However, every local density matrix can be used by reading it in as a numpy array. From these matrices, the multipoles can be straightforwardly calculated.

Alternatively, the multipoles computed by Elk and VASP (unpublished VASP modification by our group) can directly be read. This allows for direct comparison between this implementation and the respective DFT implementation.

For the computed/read multipoles, the code can then calculate exchange and Hartree energies.

How to cite

DOI

Please use the doi linked in the README.md on the main branch.

Equations

Brief summary of the important steps for this code with explicit summations:

Transformation from cubic to spherical harmonics

multipyles.helper.spherical_to_cubic returns the matrix M to transform the complex spherical harmonics $|c_m \rangle$ to the real cubic harmonics $|r_m \rangle$ with $|r_m\rangle = \sum_n M_{mn} |c_n \rangle$ so that the density matrix in complex spherical harmonics is

$$\rho_{m,m'} = \langle c_m | \rho | c_{m'} \rangle = \sum_{nn'} M_{nm} \langle r_n | \rho | r_{n'} \rangle M^*_{n'm'}$$

Decomposition of occupation in Pauli matrices

$$\rho_{i,m,m',p} = \left.\left(\sum_{s,s'} \rho_{i,m,m',s,s'} \sigma^{(p)}_{s',s} \right)\right/2,$$

where $\rho_{i,m,m',s,s'}$ is the density matrix per site $i$ in spherical harmonics and $p = x, y, z, 0$ is the index to the Pauli matrices $\sigma^{(p)}$.

Computation of time-reversal (tr) even and odd density matrix

Time-reversal symmetrization based on Pauli matrices:

$$\rho^{(\nu)}_{i,m,m',p} = \left.\left(\rho_{i,m,m',p} + (-1)^\nu (-1)^{m+m'} (-1)^{p \neq 0} \rho_{i,-m',-m,p}\right)\right/2,$$

where $\nu = 0 (1)$ means time-reversal even (odd).

Then rewrite matrix in spin components:

$$\rho^{(\nu)}_{i,m,m',s,s'} = \sum_p \rho^{(\nu)}_{i,m,m',p} \sigma^{(p)}_{s,s'}.$$

Calculation of multipole moments

Formulas for multipoles ($\sigma = 1/2$):

Orbital part orbital_part(l, k, x, m, mp) (m$\equiv m$, mp$\equiv m'$):

$$\displaylines{\langle m | v^k_x | m' \rangle = n_k^{-1} \cdot (-1)^{l-m} \begin{pmatrix} l & k & l \\ -m & x & m' \end{pmatrix} \\\ n_k^{-1} = \left.\sqrt{(2l-k)! (2l+k+1)!} \right/ (2l)!}$$

Spin part spin_part(p, y, s, sp) (s$\equiv s$, sp$\equiv s'$, $\sigma=1/2$):

$$\displaylines{\langle s | t^p_y | s' \rangle = n_p^{-1} \cdot (-1)^{\sigma-s} \begin{pmatrix} \sigma & p & \sigma \\ -s & y & s' \end{pmatrix}\\\ n_p^{-1} = \sqrt{(2\sigma+p+1)!} = \sqrt{(p+2)!}}$$

Coupling part coupling_part(k, p, r, x, y, t):

$$\displaylines{\xi^{k,p,r}_{x,y,t} = \bar n_{k,p,r}^{-1} \cdot (-1)^{k-x+p-y} \begin{pmatrix} k & r & p \\ -x & t & -y \end{pmatrix}\\\ \bar n_{k,p,r}^{-1} = \mathrm i^{-g} \cdot \sqrt{\frac{(g+1)!}{(g-2k)! (g-2p)! (g-2r)!}} \cdot \frac{(g-2k)!! (g-2p)!! (g-2r)!!}{g!!} \quad\text{with}\quad g=k+p+r }$$

Putting everything together to get the multipole:

$$w^{(\nu)}_{i,t,k,p,r} = \sum_{x=-k\ldots k, \\ y=-p\ldots p} \xi^{k,p,r}_{x,y,t} \sum_{s=-\sigma\ldots\sigma, \\ s'=-\sigma\ldots\sigma} \langle s | t^p_y | s' \rangle \sum_{m=-l\ldots l, \\ m'=-l\ldots l} \langle m | v^k_x | m' \rangle \rho^{(\nu)}_{i,m',m,s',s}$$

Copyright and license

Copyright (c) 2022-2023 ETH Zurich, Maximilian E. Merkel; Materials Theory Group, D-MATL

This project is licensed under the MIT License - see LICENSE.txt for details.