-
Notifications
You must be signed in to change notification settings - Fork 1
The purpose of this basic C integrator is to find the numerical position-momentum solution of a Newtonian particle given arbitrary initial conditions. It implements 4 basic techniques (forwards Euler, backwards Euler, trapezoid, and leapfrog).
mathildepapillon/1D-algorithms
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
{\rtf1\ansi\ansicpg1252\cocoartf1671\cocoasubrtf100 {\fonttbl\f0\fnil\fcharset0 HelveticaNeue;\f1\fswiss\fcharset0 Helvetica;\f2\fnil\fcharset0 Menlo-Regular; } {\colortbl;\red255\green255\blue255;\red27\green31\blue34;\red255\green255\blue255;\red0\green0\blue0; } {\*\expandedcolortbl;;\cssrgb\c14118\c16078\c18039;\cssrgb\c100000\c100000\c100000;\csgray\c0; } \margl1440\margr1440\vieww10800\viewh8980\viewkind0 \deftab720 \pard\pardeftab720\sl360\sa200\partightenfactor0 \f0\fs32 \cf2 \cb3 \expnd0\expndtw0\kerning0 \outl0\strokewidth0 \strokec2 The purpose of this basic C integrator is to find the numerical position-momentum solution of a Newtonian particle given arbitrary initial conditions. It implements 4 basic techniques (forwards Euler, backwards Euler, trapezoid, and leapfrog). \f1\fs24 \cf0 \cb1 \kerning1\expnd0\expndtw0 \outl0\strokewidth0 \ \pard\tx566\tx1133\tx1700\tx2267\tx2834\tx3401\tx3968\tx4535\tx5102\tx5669\tx6236\tx6803\pardirnatural\partightenfactor0 \cf0 \ To compile the program, run the following command in Mac Terminal:\ \ \pard\tx566\tx1133\tx1700\tx2267\tx2834\tx3401\tx3968\tx4535\tx5102\tx5669\tx6236\tx6803\pardirnatural\partightenfactor0 \f2\fs22 \cf4 \cb3 \CocoaLigature0 gcc main.c vector_mtx.c forces.c analysis.c init.c evolve.c -o exec -lm\ \ \ This will make a Unix executable named \'91exec\'92. Execute the source code using provided initial data with the command:\ \ ./exec InputParams.txt }
About
The purpose of this basic C integrator is to find the numerical position-momentum solution of a Newtonian particle given arbitrary initial conditions. It implements 4 basic techniques (forwards Euler, backwards Euler, trapezoid, and leapfrog).
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published