The source code in this repository catalogs supplementary computations including tables and symbolic summation and integration calculations used in my article documenting work with the Mertens function (2021). The sources come in two flavors: Mathematica notebook format and sage (python3 source) format.
There is a listing of some additional documentation files in the subdirectory. The other computational experiments, e.g., to verify numerical expectation or average order formulas from the article found in this directory, should be self explanatory from context. Feel free to contact the author if any errors are present or if other issues arise.
The key Dirichlet inverse function sequence, sage
(working with python3
) to compute this sequence and its summatory
function
$ cd SageMath
$ sage
sage: attach("Scripts/AttachAllFiles.sage")
sage: print(table([[nx, gInvFunc(nx), GSummatoryFunc(nx)] for nx in range(1, 111)]))
1 1 1
2 -2 -1
3 -2 -3
4 2 -1
5 -2 -3
6 5 2
7 -2 0
8 -2 -2
9 2 0
10 5 5
11 -2 3
12 -7 -4
13 -2 -6
14 5 -1
15 5 4
16 2 6
17 -2 4
18 -7 -3
19 -2 -5
20 -7 -12
21 5 -7
22 5 -2
23 -2 -4
24 9 5
25 2 7
26 5 12
27 -2 10
28 -7 3
29 -2 1
30 -16 -15
31 -2 -17
32 -2 -19
33 5 -14
34 5 -9
35 5 -4
36 14 10
37 -2 8
38 5 13
39 5 18
40 9 27
41 -2 25
42 -16 9
43 -2 7
44 -7 0
45 -7 -7
46 5 -2
47 -2 -4
48 -11 -15
49 2 -13
50 -7 -20
51 5 -15
52 -7 -22
53 -2 -24
54 9 -15
55 5 -10
56 9 -1
57 5 4
58 5 9
59 -2 7
60 30 37
61 -2 35
62 5 40
63 -7 33
64 2 35
65 5 40
66 -16 24
67 -2 22
68 -7 15
69 5 20
70 -16 4
71 -2 2
72 -23 -21
73 -2 -23
74 5 -18
75 -7 -25
76 -7 -32
77 5 -27
78 -16 -43
79 -2 -45
80 -11 -56
81 2 -54
82 5 -49
83 -2 -51
84 30 -21
85 5 -16
86 5 -11
87 5 -6
88 9 3
89 -2 1
90 30 31
91 5 36
92 -7 29
93 5 34
94 5 39
95 5 44
96 13 57
97 -2 55
98 -7 48
99 -7 41
100 14 55
101 -2 53
102 -16 37
103 -2 35
104 9 44
105 -16 28
106 5 33
107 -2 31
108 -23 8
109 -2 6
110 -16 -10
Given that we have "nice", easy to work with exact formulas for TODO
, we may begin to wonder
how closely (and when) we can approximate
$ cd SageMath
$ sage
sage: load("Scripts/CompareSquarefreeSumsToGInv.sage")
25 7 1.85714285714286 0.400000000000000 0.240000000000000
50 -20 -0.200000000000000 0.360000000000000 0.300000000000000
75 -25 0.000000000000000 0.426666666666667 0.293333333333333
100 55 0.381818181818182 0.530000000000000 0.260000000000000
125 -78 0.230769230769231 0.528000000000000 0.232000000000000
150 76 -0.263157894736842 0.500000000000000 0.240000000000000
175 -13 5.30769230769231 0.428571428571429 0.314285714285714
200 -127 0.905511811023622 0.470000000000000 0.275000000000000
225 91 -0.0549450549450549 0.484444444444444 0.271111111111111
250 169 -0.319526627218935 0.440000000000000 0.344000000000000
275 -40 2.32500000000000 0.400000000000000 0.356363636363636
300 -192 0.703125000000000 0.396666666666667 0.326666666666667
325 -167 0.874251497005988 0.443076923076923 0.301538461538462
350 99 -0.656565656565657 0.440000000000000 0.291428571428571
375 242 -0.528925619834711 0.410666666666667 0.333333333333333
400 243 -0.238683127572016 0.385000000000000 0.375000000000000
425 16 -5.93750000000000 0.362352941176471 0.397647058823529
450 -268 0.716417910447761 0.360000000000000 0.377777777777778
475 -334 0.476047904191617 0.393684210526316 0.357894736842105
500 -336 0.535714285714286 0.424000000000000 0.340000000000000
Now within a detailed interval:
465 -248 0.584677419354839 0.380645161290323 0.365591397849462
466 -243 0.576131687242798 0.381974248927039 0.364806866952790
467 -245 0.579591836734694 0.383297644539615 0.364025695931477
468 -319 0.445141065830721 0.384615384615385 0.363247863247863
469 -314 0.436305732484076 0.385927505330490 0.362473347547974
470 -330 0.463636363636364 0.387234042553191 0.361702127659574
471 -325 0.455384615384615 0.388535031847134 0.360934182590234
472 -316 0.468354430379747 0.389830508474576 0.360169491525424
473 -311 0.459807073954984 0.391120507399577 0.359408033826638
474 -327 0.486238532110092 0.392405063291139 0.358649789029536
475 -334 0.476047904191617 0.393684210526316 0.357894736842105
476 -304 0.523026315789474 0.394957983193277 0.357142857142857
477 -311 0.511254019292605 0.396226415094340 0.356394129979036
478 -306 0.503267973856209 0.397489539748954 0.355648535564854
479 -308 0.506493506493506 0.398747390396660 0.354906054279749
480 -404 0.386138613861386 0.400000000000000 0.354166666666667
481 -399 0.378446115288221 0.401247401247401 0.353430353430353
482 -394 0.370558375634518 0.402489626556017 0.352697095435685
483 -410 0.395121951219512 0.403726708074534 0.351966873706004
484 -396 0.409090909090909 0.404958677685950 0.351239669421488
485 -391 0.401534526854220 0.406185567010309 0.350515463917526
486 -378 0.415343915343915 0.407407407407407 0.349794238683128
487 -380 0.418421052631579 0.408624229979466 0.349075975359343
488 -371 0.428571428571429 0.409836065573771 0.348360655737705
489 -366 0.420765027322404 0.411042944785276 0.347648261758691
490 -336 0.458333333333333 0.412244897959184 0.346938775510204
491 -338 0.461538461538462 0.413441955193483 0.346232179226069
492 -308 0.506493506493506 0.414634146341463 0.345528455284553
493 -303 0.498349834983498 0.415821501014199 0.344827586206897
494 -319 0.523510971786834 0.417004048582996 0.344129554655870
495 -289 0.577854671280277 0.418181818181818 0.343434343434343
496 -300 0.556666666666667 0.419354838709677 0.342741935483871
497 -295 0.549152542372881 0.420523138832998 0.342052313883300
498 -311 0.572347266881029 0.421686746987952 0.341365461847390
499 -313 0.575079872204473 0.422845691382766 0.340681362725451
500 -336 0.535714285714286 0.424000000000000 0.340000000000000