Skip to content
/ pyeee Public

A Python library providing parameter screening of computational models using the extension of Morris' method of Elementary Effects called Efficient or Sequential Elementary Effects by Cuntz, Mai et al. (Water Res Research, 2015).

License

Notifications You must be signed in to change notification settings

mcuntz/pyeee

Repository files navigation

pyeee - Efficient parameter screening of computational models

A Python library for parameter screening of computational models using Morris' method of Elementary Effects and its extension of Efficient or Sequential Elementary Effects by Cuntz, Mai et al. (Water Res Research, 2015).

DOI PyPI version Conda version License Build Status Coverage Status

About pyeee

pyeee is a Python library for performing parameter screening of computational models. It uses Morris' method of Elementary Effects and its extension, the so-called Efficient or Sequential Elementary Effects published by

Cuntz, Mai et al. (2015) Computationally inexpensive identification of noninformative model parameters by sequential screening, Water Resources Research 51, 6417-6441, doi: 10.1002/2015WR016907.

pyeee can be used with Python functions but also with external programs, using for example the library partialwrap. Function evaluation can be distributed with Python's multiprocessing module or via the Message Passing Interface (MPI).

Documentation

The complete documentation for pyeee is available at Github Pages:

https://mcuntz.github.io/pyeee/

Quick usage guide

Simple Python function

Consider the Ishigami-Homma function: y = sin(x_0) + a * sin(x_1)^2 + b * x_2^4 * sin(x_0).

Taking a = b = 1 gives:

import numpy as np
def ishigami1(x):
    return np.sin(x[0]) + np.sin(x[1])**2 + x[2]**4 * np.sin(x[0])

The three paramters x_0, x_1, x_2 follow uniform distributions between -pi and +pi.

Morris' Elementary Effects can then be calculated as:

from pyeee import screening

npars = 3
# lower boundaries
lb = np.ones(npars) * (-np.pi)
# upper boundaries
ub = np.ones(npars) * np.pi
# Elementary Effects
np.random.seed(seed=1023)  # for reproducibility of examples
out = screening(ishigami1, lb, ub, 10)   # mu*, mu, sigma
print("{:.1f} {:.1f} {:.1f}".format(*out[:, 0]))
# gives: 173.1 0.6 61.7

which gives the Elementary Effects mu*.

Sequential Elementary Effects distinguish between informative and uninformative parameters using several times Morris' Elementary Effects, returning a logical ndarray with True for the informative parameters and False for the uninformative parameters:

from pyeee import eee

# screen
np.random.seed(seed=1023)  # for reproducibility of examples
out = eee(ishigami1, lb, ub, ntfirst=10)
print(out)
[ True False  True]

Python function with extra parameters

The function for the routines in pyeee must be of the form func(x). Use Python's partial from the functools module to pass other function parameters. For example pass the parameters a and b to the Ishigami-Homma function.

import numpy as np
from pyeee import eee
from functools import partial

def ishigami(x, a, b):
   return np.sin(x[0]) + a * np.sin(x[1])**2 + b * x[2]**4 * np.sin(x[0])

def call_ishigami(func, a, b, x):
   return func(x, a, b)

# Partialise function with fixed parameters
a = 0.5
b = 2.0
func  = partial(call_ishigami, ishigami, a, b)

npars = 3
# lower boundaries
lb = np.ones(npars) * (-np.pi)
# upper boundaries
ub = np.ones(npars) * np.pi
# Elementary Effects
np.random.seed(seed=1023)  # for reproducibility of examples
out = eee(func, lb, ub, ntfirst=10)

Figuratively speaking, partial passes a and b to the function call_ishigami already during definition so that eee can then simply call it as func(x), where x is passed to call_ishigami then as well.

Function wrappers

We recommend to use our package partialwrap for external executables, which allows easy use of external programs and their parallel execution. See the userguide for details. A trivial example is the use of partialwrap for the above function wrapping:

from partialwrap import function_wrapper

args = [a, b]
kwargs = {}
func = partial(func_wrapper, ishigami, args, kwargs)
# screen
out = eee(func, lb, ub, ntfirst=10)

Installation

The easiest way to install is via pip:

pip install pyeee

or via conda:

conda install -c conda-forge pyeee

Requirements

License

pyeee is distributed under the MIT License. See the LICENSE file for details.

Copyright (c) 2019-2024 Matthias Cuntz, Juliane Mai

The project structure is based on a template provided by Sebastian Müller.

About

A Python library providing parameter screening of computational models using the extension of Morris' method of Elementary Effects called Efficient or Sequential Elementary Effects by Cuntz, Mai et al. (Water Res Research, 2015).

Topics

Resources

License

Stars

Watchers

Forks

Languages