Skip to content

mcv-m6-video/mcv-m6-2021-team7

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

M6 Video Analysis - MCV

Video Surveillance for Road Traffic Monitoring

Team 7

Members Mail Github
Alex Tempelaar alexander.tempelaar@e-campus.uab.cat Tempe25
Víctor Ubieto victor.ubieto@e-campus.uab.cat victorubieto
Mar Ferrer mar.ferrerf@e-campus.uab.cat namarsu
Antoni Rodríquez antoni.rodriguez@e-campus.uab.cat antoniRodriguez
  • Link to our final report in LateX here
  • Presentation slides linked at each week explanation
  • Dataset used: In this project we used the dataset from CVPR 2020 AI City Challenge, specifically the sequence 03 for testing, and sequences 01 and 04 for training.

Project Schedule

Week 1 (Slides)

  • Task 1: Detection metrics.
  • Task 2: Detection metrics. Temporal analysis.
  • Task 3: Optical flow evaluation metrics.
  • Task 4: Visual representation optical flow.

Process to run the code

  1. Add paths to data files:
    • Task 1.1
      • Groundtruth xml path: --Lines 17
    • Task 1.2
      • Groundtruth xml path: --Lines 78
      • Prediction paths: --Lines 80-82
    • Task 2
      • Groundtruth xml path: --Line 105
      • Video path: --Line 106
      • Prediction paths: --Lines 108-110
    • Task 3
      • Flow prediction: --Line 148
      • Groundtruth flow: --Line 149
    • Task 4
      • Flow prediction: --Line 173
      • Groundtruth flow: --Line 174
      • Image path: --Line 175
  2. Select the task to run leaving it uncommented: --Lines 184-188
  3. Run: >> python lab1.py

Week 2

  • Task 1: Gaussian modeling of the background for foreground extraction and evaluation.
  • Task 2: Adaptive modeling and evaluation.
  • Task 3: State-of-the-art methods for foreground extraction.
  • Task 4: Use color spaces to perform foreground extraction.

Process to run the code

  1. Add paths to data files:
    • Task 1.1
      • Groundtruth xml path: --Lines 11
      • Video path: --Lines 15
    • Task 1.2
      • The user variables are the same than in task 1.1
    • Task 2
      • Groundtruth xml path: --Line 51
      • Video path: --Line 55
      • Prediction paths: --Lines 108-110
    • Task 3
      • Groundtruth xml path: --Lines: 103
      • Video path: --Lines: 106
    • Task 4
      • The experiments were executed using the previous code.
  2. Select the task to run leaving it uncommented: --Lines 126-128
  3. Run: >> python lab2.py

Week 3

  • Task 1: Object detection
  • Task 1.1: Off-the-shelf
  • Task 1.2: Fine-tune to your data
  • Task 1.3: K-Fold Cross Validation
  • Task 2: Object tracking
  • Task 2.1: Tracking by Overlap
  • Task 2.2: Tracking with a Kalman Filter
  • Task 2.3: IDF1 score

Process to run the code

  1. Add paths to data files:
    • Task 1.1
      • Model name: --Line 21
      • Groundtruth xml path: --Lines 22
      • Video path: --Lines 23
    • Task 1.2_B (Cross_val technique B)
      • Hyperparameters: --Lines 72-74
      • Gt path: -- Line 78
      • Video path: --Line 79
    • Task 1.2_C (Cross_val technique C)
      • Hyperparameters: --Lines 195-197
      • Gt path: -- Line 201
      • Video path: --Line 202
    • Task 2.1
      • Pkl path (with bboxes and socores): --Lines: 316
      • Video path: --Lines: 317
      • Gt path: --Line 318
      • Parameters: --Lines 319-323
    • Task 2.2
      • Pkl path (with bboxes and socores): --Lines: 498
      • Video path: --Lines: 499
      • Gt path: --Line 500
      • Parameters: --Lines 501-502
  2. Select the task to run leaving it uncommented: --Lines 626-630
  3. Run: >> python lab3.py

Week 4

  • Task 1.1: Block matching implementation
  • Task 1.2: Off-the-shelf optical flow methods
  • Task 2.1: Video stabilization with Block Matching
  • Task 2.2: Off-the-shelf Stabilization
  • Task 3.1: Object tracking with optical flow

Process to run the code

  1. Add paths to data files:
    • Task 1.1
      • Perform grid search: --Line 24
      • Distance function for template matching: --Line 24
      • Image 1 path: --Line 29
      • Image 2 path: --Line 30
      • Flow gt path: --Line 33
    • Task 1.2
      • Algorithm: --Line 107
      • Image 1 path: --Line 109
      • Image 2 path: --Line 110
      • Flow gt path: --Line 113
    • Task 2.1
      • Video path: --Lines: 208
    • Task 2.2
      • Method: --Line 260
    • Task 3.1
      • Pkl file: --Line 323
      • Video path: --Lines: 324
      • Gt path: --Line 325
      • Parameters: --Lines 326-330
  2. Select the task to run leaving it uncommented: --Lines 528-532
  3. Run: >> python lab4.py

Week 5 (Slides)

  • Task 1: Multi-target Single-camera Tracking
  • Task 2: Multi-target Multi-camera Tracking

Process to run the code

  1. Add paths to data files:
    • Task 1
      • Detections: --Line 16
      • Ground truth: --Line 17
      • Video: --Line 18
    • Task 2
      • Ground truth: --Line 335
      • Sequence 03 paths: --Line 336
      • Pickles path (optional): --Lines 375-376
  2. (Optional) Tweak parameters and flags as desired:
    • Task 1: --Lines 16 and 21-35
    • Task 2: --Lines 379-382
  3. Select the task to run leaving it uncommented: --Lines 496-497
  4. Run: >> python lab5.py

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •